Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (2): 506-515.doi: 10.13229/j.cnki.jdxbgxb.20220342

Previous Articles    

Analysis and control of mud spillover in high⁃speed railway ballast⁃track subgrade caused by grouting

Xiao HAN1,2,3(),Xian-zhang LING1,2,3(),Shuang TIAN1,2,3,Sheng-yi CONG1,2,3   

  1. 1.College of Civil Engineering,Harbin Institute of Technology,Harbin 150090,China
    2.Chongqing Research Institute,Harbin Institute of Technology,Chongqing 401135,China
    3.Heilongjiang Research Center for Rail Transit Engineering in Cold Regions,Harbin 150090,China
  • Received:2022-03-30 Online:2024-02-01 Published:2024-03-29
  • Contact: Xian-zhang LING E-mail:hanx_hit@163.com;lingxianzhang@hit.edu.cn

Abstract:

COMSOL Multiphysics finite element software was used to establish a three-dimensional grouting model of high-speed railway ballast-track subgrade. Taking grouting pressure, grouting depth, grouting downward inclination angle and grouting pipe spacing as the main grouting parameters, a numerical simulation study was conducted. The results showed that: The upper surface flux can be used to characterize the amount of grouting. In the process of grouting, the amount of surface mud spillover is significantly positively correlated with the grouting pressure. When the grouting pressure increases by 0.1 MPa, the flux linearly increases by about 0.05 kg/m2·s. The surface flux decreases with the increase of grouting depth, downward inclination angle and grouting pipe spacing. Grouting pressure has a significant effect on the grouting effect. The combined construction method of sleeve valve tube section and upper cover layer is adopted, which can effectively control the mud spillover problem.

Key words: high speed railway, ballast track, mud spillover, finite element simulation, construction optimization

CLC Number: 

  • U215.7

Fig.1

Model verification two-dimensional soil column grouting diagram"

Table 1

Model parameter value"

参数数值参数数值
初始孔隙率0.3泊松比0.25
初始渗透率/m21.75×10-11介质密度/(kg·m-31600
比奥系数1浆液初始密度/(kg·m-31370
弹性模量/MPa20浆液黏度/(Pa·s)0.017

Fig.2

Schematic diagram of comparison between numerical simulation and experimental value"

Fig.3

Global and local coordinate systems"

Fig.4

Finite element model mesh"

Table 2

Seepage field parameter"

参数数值
初始孔隙率0.3
初始渗透率(道砟)/m21×10-10
初始渗透率(基床及以下路堤)/m25×10-12
浆液黏度/(Pa·s)0.017
比奥系数1
浆液初始密度/(kg·m-31400

Table 3

Seepage field parameter"

土层弹性模量E/MPa泊松比v密度ρ/ (kg·m-3
道砟2000.252100
基床表层1800.32000
基床底层1100.32000
基床以下路堤600.42000

Fig.5

Distribution diagram of top surface flux value at grouting pressure of 0.2 MPa"

Fig.6

Line graph of maximum top surface flux under different grouting pressures"

Fig.7

Line graph of maximum top surface flux under different grouting depth"

Fig.8

Line graph of maximum top surface flux under different grouting angle"

Fig.9

Line graph of maximum top surface flux under different grouting pipe spacing"

Table 4

Orthogonal test result data table"

序号ABCD最大通量值/kg·m-2·s)
10.20.300.30.36
20.20.5-50.50.14
30.20.7-100.70.10
40.20.9-150.90.08
50.40.3-50.70.34
60.40.500.90.30
70.40.7-150.30.14
80.40.9-100.50.14
90.60.3-100.90.33
100.60.5-150.70.23
110.60.700.50.38
120.60.9-50.30.24
130.80.3-150.50.40
140.80.5-100.30.39
150.80.7-50.90.34
160.80.900.70.37
Ii0.671.441.421.13
i0.931.061.061.06
i1.190.960.971.05
i1.150.830.851.06
Ii/40.170.360.350.28
i/40.230.270.270.26
i/40.300.240.240.26
i/40.380.210.210.26
极差0.210.150.140.02

Fig.10

Schematic diagram of influence range of grouting pressure under different grouting processes"

Table 5

Seepage field parameter"

参数数值参数数值
初始孔隙率0.3浆液黏度/(Pa·s)1.7367e0.444t
初始渗透率(道砟)/m21×10-10比奥系数1
初始渗透率(基床及以下路堤)/m25×10-12浆液初始密度/(kg·m-3)1400

Fig.11

Top surface flux cloud map under different grouting processes"

Fig.12

Flux cloud map of the lower top surface under the combined grouting process of the upper cover layer and the sleeve valve tube"

Fig.13

Histogram of the maximum flux on the upper surface under different grouting methods"

Fig.14

Three typical capping forms under different grouting angles"

Fig.15

Maximum flux line diagrams of the bottom and top surfaces of different overcaps"

1 张小炳. 高速铁路列车停站方案与运行图协同优化理论与方法[D]. 成都: 西南交通大学交通运输与物流学院, 2018.
Zhang Xiao-bing. Theory and method of collaborative optimization of stopping scheme and running diagram ofhigh-speed railway[D]. Chengdu: School of Transportation and Logistics, Southwest Jiaotong University, 2018.
2 Yang Y, Tang X, Zheng H, et al. Hydraulic fracturing modeling using the enriched numerical manifold method[J]. Applied Mathematical Modelling, 2018, 53: 462-486.
3 Moon H K, Song M K. Numerical studies of groundwater flow, grouting and solute transport injointed rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 206-218.
4 Lorig L J, Brady B H G, Cundall P A. Hybrid distinct element-boundary element analysis of jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(4): 303-312.
5 Baca R G, Arnett R C, Langford D W. Modelling fluid flow in fractured-porous rock masses by finite-element techniques[J]. International Journal for Numerical Methods in Fluids, 2010, 4(4): 337-348.
6 Eriksson M, Stille H, Andersson J. Numericalcalculationsfor prediction of grout spread withaccount for filtration and varying aperture[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2000, 15(4): 353-364.
7 Zheng H, Liu F, Li C G. Primal mixed solution to unconfined seepage flow in porous media with numerical manifold method[J]. Applied Mathematical Modelling, 2015, 39(2): 794-808.
8 Ma G W, Wang H D, Fan L F, et al. Segmented two-phase flow analysis in fractured geological mediumbased on the numerical manifold method[J]. Advances in Water Resources, 2018, 121(11): 112-129.
9 Ma G W, Wang H D, Fan L F, et al. A unified pipe-network-based numerical manifold method for simulating immiscible two-phase flow in geological media[J]. Journal of Hydrology, 2018, 568: 119-134.
10 Prevost J H, Sukumar N. Faults simulations for three-dimensional reservoir-geomechanical models with theextended finite element method[J]. Journal of the Mechanics & Physics of Solids, 2016, 86(1): 1-18.
11 王腾, 周茗如, 马连生, 等. 基于断裂理论的湿陷性黄土劈裂注浆裂纹扩展[J].吉林大学学报: 工学版, 2017, 47(5): 1472-1481.
Wang Teng, Zhou Ming-ru, Ma Lian-sheng, et al. Crack propagation of collapsible loess by split-grouting based on fracture theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(5): 1472-1481.
12 冯学钢. 高填方路基沉降处治灌浆技术的工程实践与认识[J]. 岩石力学与工程学报, 2006(2): 334-339.
Feng Xue-gang. Engineering practice and understanding of high fill roadbed settlement treatmentgrouting technology [J]. Journal of Rock Mechanics and Engineering, 2006(2): 334-339.
13 崔凯, 许鹏飞, 黄井镜, 等. 土遗址裂隙注浆-土界面粘结构性能干旱环境耐久性对比[J/OL]. [2023-11-25].
Cui Kai, Xu Peng-fei, Huang Jing-jing, et al. Comparison of grain-soil interface bonding properties in soil site fracture grouting in drought environment[J/OL]. [2023-11-25].
14 朱登元, 管延华, 刘惠忠, 等. 袖阀管劈裂注浆加固粉土路基实验研究[J]. 岩土工程学报, 2012, 34(8): 1425-1431.
Zhu Deng-yuan, Guan Yan-hua, Liu Hui-zhong, et al. Experimental study on strengthening silty subgrade with sleeve valve tube split grouting[J]. Journal of Geotechnical Engineering, 2012, 34(8): 1425-1431.
15 李璐, 程鹏达, 钟宝昌, 等. 黏性浆液在小孔隙多孔介质中扩散的流固耦合分析[J]. 水动力学研究与进展A辑, 2011, 26(2): 209-216.
Li Lu, Cheng Peng-da, Zhong Bao-chang, et al. Fluid-structure interaction analysis of viscous grout diffusion in smallporous media[J]. Advances in Hydrodynamics Research A, 2011, 26(2): 209-216.
16 程鹏达. 孔隙地层中粘性时变注浆浆液流动特性研究[D]. 上海: 上海大学力学与工程科学学院, 2012.
Cheng Peng-da. Study on flow characteristics of viscous time-varying grout in pore formation[D]. Shanghai: School of Mechanics and Engineering Science,Shanghai University, 2012.
17 孙培德, 杨东全, 陈奕柏. 多物理场耦合模型及数值模拟导论[M]. 北京: 中国科学技术出版社, 2007.
Sun Pei-de, Yang Dong-quan, Chen Yi-bai. Introduction to Multiple Physical Field Coupling Models and Numerical Simulation[M]. Beijing: China Science and Technology Press, 2007.
18 李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展A辑, 2003, 18(4): 419-426.
Li Pei-chao, Kong Xiang-yan, Lu De-tang. A mathematical model forfluid-structure coupling seepage in saturated porous media[J]. Hydrodynamics Research and Progress Series A, 2003, 18(4): 419-426.
19 崔溦, 李永杰, 戚蓝, 等. 高自生热材料注浆过程多场耦合数值分析[J]. 武汉大学学报: 工学版, 2018, 51(11): 941-949.
Cui Wei, Li Yong-jie, Qi Lan, et al. Multi-field coupling numerical analysis of high autogenic thermal material grouting process[J]. Journal of Wuhan University (Engineering Edition), 2018, 51(11): 941-949.
20 王丽娜. 注浆技术在路基加固中的机理及应用研究[D].济南: 山东大学土建与水利学院, 2017.
Wang Li-na. Research on mechanism and application of grouting technology in roadbed reinforcement[D]. Ji'nan: School of Civil Engineering and Water Conservancy, Shandong University, 2017.
21 . 高速铁路设计规范 [S].
22 张千里, 韩自力, 吕宾林. 高速铁路路基基床结构分析及设计方法[J]. 中国铁道科学, 2005, 26(6): 53-57.
Zhang Qian-li, Han Zi-li, Lv Bin-lin. Structural analysis anddesign method of high-speed railwaysubgrade foundation bed[J]. China Railway Science, 2005, 26(6): 53-57.
23 . 注浆技术规程 [S].
24 凌贤长, 官宏宇, 王成举. 黏土浆液固化剂的技术性能与工程中的应用[J]. 南水北调与水利科技, 2005, 3(): 40-41.
Ling Xian-zhang, Guan Hong-yu, Wang Cheng-ju. Technical performance and engineering application of clay grout curing agent[J]. South-to-north WaterDiversion and Water Science and Technology, 2005, 3(Sup.1): 40-41.
25 凌贤长, 蔡德所, 朱新永, 等. 特种粘土固化浆液研制及其工程应用成套技术[Z]. 2004.
26 张玉石. 特种粘土固化浆液扩散性与可注性研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2006.
Zhang Yu-shi. Study on diffusivity and injectivity of special clay solidified grout[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2006.
[1] Ce LIANG,Fu-lei HUANG,Ji-cai LIANG,Yi LI. Numerical simulation on deformation of protective beam with “日”-shaped section during rotary draw bending [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3397-3403.
[2] Yong-hui SHANG,Lin-rong XU,Zhao-feng CHEN. Consolidation characteristics and influencing factors of rigid pile-raft foundation of high-speed railway [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1588-1597.
[3] Liu ZHANG,Xiao-yi ZHENG,Fan ZHANG,Yu ZHAO,Shu-yang ZHAO. Structural optimization design of large tolerance and multi⁃flexibility lens subassembly [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 478-485.
[4] Yin-ping LI,Tian-xu JIN,Li LIU. Design and dynamic characteristic simulation of pantograph⁃catenary continuous energy system for pure electric LHD [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 454-463.
[5] Wei-min ZHUANG,Hong-da SHI,Dong-xuan XIE,Guan-nan YANG. Thickness distribution of adhesive layer in dissimilar clinch⁃adhesive hybrid joint with steel and aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 100-106.
[6] ZHOU Jie, LUO Yan, WANG Xun, WANG Hui, LI Yang, TAO Ya-ping. Multi-objective optimization of stamping forming process of head based on response surface model [J]. 吉林大学学报(工学版), 2016, 46(1): 205-212.
[7] CHENG Qiang, ZHANG Zhen-dong, GUO Hui, XIE Nai-liu. Electro-magnetic-thermal coupling of GDI injector [J]. 吉林大学学报(工学版), 2015, 45(3): 806-813.
[8] LI Guo-fa, HAN Ming-zuo, SHAN Cui-yun, LIU Jia. Finite element simulation and experiment of magneto-rheological torque servo device [J]. 吉林大学学报(工学版), 2013, 43(05): 1284-1289.
[9] WANG Jing, WANG Dian-Hai, QU Zhao-Wei. Prediction method of highway induced passenger flow volume adapting ChangchunJilin high speed railway project [J]. 吉林大学学报(工学版), 2010, 40(06): 1518-1522.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!