Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 1028-1037.doi: 10.13229/j.cnki.jdxbgxb.20220670

Previous Articles    

Numerical simulation method for reinforced concrete columns based on modified Bouc-Wen model

Yu-rong GUO1,2(),Jian-zhong PAN1   

  1. 1.College of Civil Engineering,Hunan University,Changsha 410082,China
    2.Key Laboratory of Building Safety and Energy Efficiency,Hunan University,Changsha 410082,China
  • Received:2022-05-31 Online:2024-04-01 Published:2024-05-17

Abstract:

In order to simulate the mechanical properties of reinforced concrete(RC) columns within nonlinear state, In this paper, an modified Bouc-Wen model is proposed to improve the Bouc-Wen-Baber-Noori (BWBN) model from the aspects of stiffness degradation, pinching effect and asymmetric characteristics. In the meantime, an identification method of model parameters is established by combining parameter normalization processing and chaotic particle swarm optimization algorithm. Furthermore, secondary development for modified Bouc-Wen material is presented in OpenSees. Afterwards, the proposed material is applied to describe the moment-rotation relationship of plastic hinge of RC columns and numerical modeling of RC columns based on concentrated plastic hinge is completed. According to the low-cyclic loading test data of RC columns, the hysteretic characteristics of RC columns are described by directly identifying the horizontal force-displacement curve and numerical modeling based on lumped plastic hinge model. The results show that the accuracy of the modified Bouc-Wen model is significantly higher than that of BWBN model. The calculation accuracy of fiber model depends on the accuracy of components information, which fails to simulate the nonlinear response of RC columns after performance change. The numerical modeling method based on the modified Bouc-Wen model can rationally simulate the degradation, pinching effect and asymmetric characteristics of RC columns after earthquake damage.

Key words: RC column, lumped plastic hinge model, Bouc-Wen model, parameter identification

CLC Number: 

  • TU375.3

Fig.1

Determination of equivalent yield point"

Fig.2

Incremental variation of stiffness degradation"

Fig.3

Influence of parameter ξη on hysteretic curve"

Fig.4

Control effect of pinch parameters"

Fig.5

Control effect of asymmetric parameter"

Table 1

Significance of modified Bouc-Wen modelparameters"

编号参数物理意义
形状控制1k规一化线性刚度
2α屈服后刚度比
3β加卸载滞回参数
4γ加卸载滞回参数
5n弹塑性过渡段参数
6v非对称参数
退化控制7δν强度退化速率
8δη刚度退化速率
9ξη刚度退化速率控制系数
捏拢控制10σ捏拢效应影响范围
11ρ捏拢处总滑移量
12u捏拢处刚度退化速率

Fig.6

Calculation model and displacement analysis"

Fig.7

Component loading devices"

Table 2

Parameters of reinforced concrete columns"

编号边界形式L/mmB/mmH/mmN0 /kNfc /MPafyl /MPafyh /MPaρl /%ρt/%
C1悬臂式75020020025630.14814631.211.44
C2双曲率式3 6006006003 06935.14134161.641.13

Fig.8

Comparison of hysteresis curves obtained by two Bouc-Wen models"

Fig.9

Comparison of skeleton curves obtained by two Bouc-Wen models"

Table 3

Comparison of error obtained by two different Bouc-Wen models"

构件RMSE/%累积耗能/(kN·m)
BWBN改进Bouc-Wen试验值BWBN识别/试验改进Bouc-Wen识别/试验
C121.9818.5820.6021.811.0620.490.99
C217.0910.381 050.36923.660.91974.010.96

Table 4

Parameter identification value of modified Bouc? Wen model with rotating spring"

参数C1C2
等效屈服点θy /rad0.005 40.019 9
My /(kN·m)27.94745.19
改进Bouc-Wen模型参数k1.3222.135
α0.3940.460
β-0.318-0.230
γ0.0250.002
n1.7661.504
v0.9230.987
δν0.0360.046
δη0.0230.054
ξη2.3134.043
σ11.9919.938
ρ0.5400.495

Fig.10

Parameter identification and model establishment of moment-rotation curve"

Fig.11

Comparison of finite element modeling hysteresis curves"

Table 5

Error comparison of finite element modeling"

构件RMSE/%累积耗能/(kN·m)
纤维模型改进Bouc-Wen模型试验值纤维模型识别/试验改进Bouc-Wen模型识别/试验
C123.5819.8620.6022.931.1119.970.97
C253.3111.78507.67816.411.61497.940.98
1 Ma F, Ng C H, Ajavakom N. On system identification and response prediction of degrading structures[J]. Structural Control & Health Monitoring, 2010, 13(1):347-364.
2 Baber T T, Wen Y K. Random vibration hysteretic, degrading systems[J]. J Engrg Mech ASCE, 1981, 107(6):1069-1087.
3 Ibarra L F, Medina R A, Krawinkler H. Hysteretic models that incorporate strength and stiffness deterioration[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(12):1489-1511.
4 Lignos D G. Sidesway collapse of deteriorating structural systems under seismic excitations[D]. Stanford: Department of Civil and Environmental Engineering, Stanford University, 2008.
5 Baber T T, Noori M N. Random vibration of degrading pinching systems[J]. ASCE Journal of Engineering Mechanics, 1985, 111(8):1010-1026.
6 Yu B, Ning C L, Li B.Hysteretic model for shear-critical reinforced concrete columns[J]. Journal of Structural Engineering, 2016, 142(9): No.04016056.
7 余波,李长晋,吴然立. 钢筋混凝土柱的非对称恢复力模型与参数识别[J]. 工程力学,2017,34(2):153-161.
Yu Bo, Li Chang⁃jin, Wu Ran⁃li. Asymmetric restoration force model and parameter identification of reinforced concrete columns[J]. Engineering Mechanics, 2017, 34(2):153-161.
8 郭玉荣,潘洪军. 一种适用于变轴力柱混合试验的改进BWBN模型及其参数识别[J]. 铁道科学与工程学报,2021,18(11):2988-2997.
Guo Yu⁃rong, Pan Hong⁃jun. An improved BWBN model and its parameter identification suitable for variable axial force column mixing test[J]. Journal of Railway Science and Engineering, 2021,18(11):2988-2997.
9 顾祥林,蔡茂,林峰. 地震作用下钢筋混凝土柱受力性能研究[J]. 工程力学,2010,27(11):160-165, 190.
Gu Xiang⁃lin, Cai Mao, Lin Feng. Study on behavior of RC columns subjected to earthquake[J]. Engineering Mechanics, 2010, 27(11): 160-165, 190.
10 王甲春,阎培渝. 海洋环境下钢筋混凝土中钢筋锈蚀的概率[J]. 吉林大学学报:工学版, 2014,44(2):352-357.
Wang Jia⁃chun, Yan Pei⁃yu. The probability of steel corrosion in reinforced concrete in marine environment[J].Journal of Jilin University (Engineering and Technology Edition ),2014,44(2):352-357.
11 李磊,罗光喜,王卓涵, 等. 震损钢筋混凝土柱剩余能力的数值模型[J]. 工程力学,2020,37(12):52-67.
Li Lei, Luo Guang⁃xi, Wang Zhuo⁃han, et al. Numerical model for residual seismic capacity of the seismic damaged reinforced concrete columns[J]. Engineering Mechanics, 2020,37(12):52-67.
12 Lee C S, Han S W. Computationally effective and accurate simulation of cyclic behaviour of old reinforced concrete columns[J]. Engineering Structures,2018,173: 892-907.
13 陆新征,叶列平,潘鹏,等. 钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛Ⅱ:关键构件试验[J]. 建筑结构,2012,42(11):23-26.
Lu Xin⁃zheng, Ye Lie⁃ping, Pan Peng, et al. Pseudo-static collapse test and numerical simulation of reinforced concrete frame structure Ⅱ: Key component test[J]. Building Structure, 2012, 42(11): 23-26.
14 Syk A, Chl B. Nondimensionalized Bouc-Wen model with structural degradation for Kalman filter–based real-time monitoring[J]. Engineering Structures, 2021, 244: No.112674.
15 Zareian F, Medina R A. A practical method for proper modeling of structural damping in inelastic plane structural systems[J]. Computers & Structures, 2010, 88, (1-2):45-53.
16 高鹰,谢胜利. 混沌粒子群优化算法[J]. 计算机科学,2004,31(8):13-15.
Gao Ying, Xie Sheng⁃li. Chaos particle swarm optimization algorithm[J]. Computer Science, 2004, 31(8): 13-15.
17 郭玉荣,姚思盈. 震损钢筋混凝土柱的残余抗震性能试验研究[J]. 湖南大学学报:自然科学版,2022,49(9):1-8.
Guo Yu⁃rong, Yao Si⁃ying. Experimental study on seismic behavior of damaged reinforced concrete columns[J]. Journal of Hunan University(Natural Science Edition), 2022, 49(9):1-8.
[1] Yun-long ZHANG,Jia-yuan ZHANG,Xue-song QIAN,Pan ZHANG,Run-chao YANG. Spectrum⁃driven methods for modal parameter identification of bridge under environmental excitation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1580-1591.
[2] Wen-ku SHI,Shu-guang ZHANG,You-kun ZHANG,Zhi-yong CHEN,Yi-fei JIANG,Bin-bin LIN. Parameter identification of magnetorheological damper model with modified seagull optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 764-772.
[3] Wei LI,Hai-sheng SONG,Hao-yu LU,Wen-ku SHI,Qiang WANG,Xiao-jun WANG. Linear identification method of hysteresis characteristic of composite leaf springs [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 829-836.
[4] Yang WANG,Zhan⁃shuai SONG,Kong⁃hui GUO,Ye ZHUANG. Measurement of inertial parameters of rotating inertia rig [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1795-1801.
[5] Qiao-bin LIU,Wen-ku SHI,Zhi-yong CHEN,Lian-meng LUO,Zhi-yong SU,Kai-jun HUANG. Parameter estimation of mixed reliability model based on kernel density optimal grouping and gravity search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1818-1825.
[6] SONG Jun, SHI Xue-fei, RUAN Xin. Optimization of thermal parameter identification for mass concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1418-1425.
[7] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[8] SUN Wei, LI Jian, JIA Shi. Identification of nonlinear stiffness and damping for hard-coating composite structure [J]. 吉林大学学报(工学版), 2016, 46(4): 1156-1162.
[9] QIN Yu-gang, MA Yong, ZHANG Liang, LI Teng-fei. Parameter identification of ship's maneuvering motion based on improved least square method [J]. 吉林大学学报(工学版), 2016, 46(3): 897-903.
[10] SHI Wen-ku,MAO Yang,JIANG Xue,CHEN Zhi-yong,MA Li-hong,PAN Bin. Parameter identification and dynamic characteristicsof semi-active hydraulic mount [J]. 吉林大学学报(工学版), 2014, 44(3): 605-611.
[11] ZHAO Fei-xiang, ZHANG Jian-wei, GUO Kong-hui, ZHANG Li-hao, ZHENG Zhong. Off-line parameter identification for induction motor based on reconstructed voltage [J]. 吉林大学学报(工学版), 2013, 43(06): 1596-1600.
[12] XIONG Rui, HE Hong-wen, XU Yong-li, HE Yin. Modeling and parameter identification approach for power battery pack used in electric vehicle [J]. , 2012, 42(04): 809-815.
[13] ZHANG Cai-ping, JIANG Jiu-chun. Extended Kalman filter algorithm for parameters identification of dynamic battery model based on genetic algorithm optimization [J]. , 2012, (03): 732-737.
[14] CHENG Yong-chun, GUO Qing-lin, TAN Guo-jin. Improved viscoelastic parameter identification for asphalt mixture [J]. , 2012, (03): 629-633.
[15] JIANG Hao, GUO Xue-dong. Concrete bridge modal parameter identification under seismic excitations [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 185-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!