吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (06): 1596-1600.doi: 10.7964/jdxbgxb201306026

• paper • Previous Articles     Next Articles

Off-line parameter identification for induction motor based on reconstructed voltage

ZHAO Fei-xiang1, ZHANG Jian-wei1, GUO Kong-hui1, ZHANG Li-hao1, ZHENG Zhong2   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2. College of Automotive Engineering, Jilin University, Changchun 130022, China
  • Received:2012-11-21 Online:2013-11-01 Published:2013-11-01

Abstract:

Vector control schemes for induction motor drive systems have been widely adopted in high performance applications. Vector control transforms the control of an induction motor to that of separately excited dc motor by creating independent channels for flux and torque control. Crucial to the success of a vector control scheme is the knowledge of the instantaneous position of the rotor flux. The position of the rotor flux is estimated in the direct vector control scheme, which requires a priori knowledge of the machine parameters. Identification of machine parameters is a basic step in designing a motor controller. In traditional method, voltage required for off-line identification of induction motor parameters is commonly obtained by filter circuit and data acquisition equipment, and the equivalent circuit of the induction motor is usually modified. The reason that traditional off-line identification result of induction motor parameters is not suitable to online model is analyzed. The internal resistance of the power devices is equivalised to the stator resistance of the motor first. Then the voltage distortion caused by dead-time is eliminated through offline voltage correction. Finally, a genetic algorithm is used to identify the equivalent electrical parameters of induction motor. Experiment results show that the parameters obtained by this method can accurately describe the steady-state and transient response of the induction motor under specific inverter power supplying conditions.

Key words: electrical engineering, induction motor, parameter identification, reconstructed voltage, distortion correction, genetic algorithm

CLC Number: 

  • TM343

[1] 夏超英. 交直流传动系统的自适应控制[M]. 北京:机械工业出版社,1998:220.

[2] Maurizio Cirrincione, Marcello Pucci, Giansalvo Cirrincione, et al. A new experimental application of least-squares techniques for the estimation of the induction motor parameters[J]. IEEE Transactions on Industry Applications, 2003, 39: 1247-1256.

[3] Yassine Koubaa, Mohamed Boussak. Rotor resistance tuning for indirect stator flux orientated induction motor drive based on MRAS scheme[J]. European Transactions on Electrical Power, 2005, 15:557-570.

[4] 陈振锋, 钟彦儒, 李洁. 感应电机参数辨识三种智能算法的比较[J]. 电机与控制学报,2010,14(11):7-12. Chen Zhen-feng, Zhong Yan-ru,Li Jie. Comparison of three intelligent optimization algorithms for parameter identification of induction motors[J]. Electric Machines And Control, 2010, 14(11): 7-12.

[5] Mustafa Arslan, Mehmet Cunkas, Tahir Sag. Determination of induction motor parameters with differential evolution algorithm[J]. Neural Computing and Applications, 2012, 21(8): 1995-2004.

[6] Hwang Seon-Hwan, Kim Jang-Mok. Dead time compensation method for voltage-fed PWM inverter[J]. IEEE Transactions on Energy Conversion, 2010, 25(1): 1-10.

[7] 刘军锋,李叶松. 死区对电压型逆变器输出误差的影响及其补偿[J]. 电 工 技 术 学 报,2007, 22(5): 117-122. Liu Jun-feng, Li Ye-song. Dead-time influence on output error of voltage source inverter and compensation[J]. Transactions of China Electrotechnical Society, 2007, 22(5): 117-122.

[8] 程小猛,陆海峰,瞿文龙,等. 用于逆变器死区补偿的空间矢量脉宽调制策略[J]. 清华大学学报:自然科学版,2008,48(7):1077-1080. Cheng Xiao-meng, Lu Hai-feng, Qu Wen-long, et al. SVPWM strategy for inverter dead time compensation[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(7): 1077-1080.

[9] Choi Jong-Woo,Sul Seung-Ki. Inverter output voltage synthesis using novel dead time compensation[J]. IEEE Transactions on Power Electronics, 1996, 11(2): 221-227.

[10] 窦汝振,刘钧,温旭辉,等. SVPWM控制逆变器死区补偿方法的研究[J]. 电力电子技术,2004,38(6):59-61. Dou Ru-zhen,Liu Jun,Wen Xu-hui,et al. Research on dead-time compensation of inverter using SVPWM[J]. Power Electronics, 2004, 38(6): 59-61.

[1] WU Wei-nan,CUI Nai-gang,GUO Ji-feng,ZHAO Yang-yang. Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1827-1837.
[2] JIAO Yu-ling, ZHANG Peng, TIAN Guang-dong, XING Xiao-cui, ZOU Lian-hui. Slotting optimization of automated warehouse based on multi-population GA [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1398-1404.
[3] SONG Jun, SHI Xue-fei, RUAN Xin. Optimization of thermal parameter identification for mass concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1418-1425.
[4] LI Qi-liang, CAO Guan-ning, LI Xuan, YANG Zhi-gang, ZHONG Li-yuan. Multi-parameters aerodynamic optimization of sedan [J]. 吉林大学学报(工学版), 2018, 48(3): 670-676.
[5] SUN Wen, WANG Qing-nian, WANG Jun-nian. Yaw-moment control of motorized vehicle for energy conservation during cornering [J]. 吉林大学学报(工学版), 2018, 48(1): 11-19.
[6] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[7] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[8] WANG Zhan-zhong, ZHAO Li-ying, CAO Ning-bo. Hazardous material transportation scheduling model based on mutilayer coding genetic algorithm [J]. 吉林大学学报(工学版), 2017, 47(3): 751-755.
[9] ZHENG Ming, ZHUO Mu-gui, ZHANG Shu-gong, ZHOU You, LIU Gui-xia. Reconstruction for gene regulatory network based on hybrid parallel genetic algorithm and threshold value method [J]. 吉林大学学报(工学版), 2017, 47(2): 624-631.
[10] ZHAO Yun-peng, YU Tian-lai, JIAO Yu-bo, GONG Ya-feng, SONG Gang. Damage identification method and factor evaluation for irregular-shaped bridge [J]. 吉林大学学报(工学版), 2016, 46(6): 1858-1866.
[11] CHEN Jin, LI Song-lin, SUN Zhen-ye, CHEN Gang. Integrated design of aerodynamic and structural performance for wind turbine dedicated airfoil [J]. 吉林大学学报(工学版), 2016, 46(6): 1940-1945.
[12] SUN Wei, LI Jian, JIA Shi. Identification of nonlinear stiffness and damping for hard-coating composite structure [J]. 吉林大学学报(工学版), 2016, 46(4): 1156-1162.
[13] WEI Li-ying, LI Ming-jun. Bus priority signal timing model considering the influence of traffic guidance [J]. 吉林大学学报(工学版), 2016, 46(3): 777-784.
[14] QIN Yu-gang, MA Yong, ZHANG Liang, LI Teng-fei. Parameter identification of ship's maneuvering motion based on improved least square method [J]. 吉林大学学报(工学版), 2016, 46(3): 897-903.
[15] SUN Shu-qin, LIU Jun-yan, JIANG Chuang-dong, MENG Qing-yun, LIN Jun, PENG Liang-yu. Least-square weighted smoothing filter technology applied in magnetic resonance sounding signal processing [J]. 吉林大学学报(工学版), 2016, 46(3): 985-995.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!