Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 987-995.doi: 10.13229/j.cnki.jdxbgxb.20221036

Previous Articles     Next Articles

Influencing factors and heterogeneity analysis of highway traffic accidents

Xiao-hua ZHAO1(),Chang LIU1,Hang QI1,Ju-shang OU2(),Ying YAO1,Miao GUO1,Hai-yi YANG1   

  1. 1.Beijing Key Lab oratory of Transportation,Beijing University of Technology,Beijing 100124,China
    2.Key Laboratory of Intelligent Police of Sichuan Province,Sichuan Police College,Chengdu 646000,China
  • Received:2022-09-12 Online:2024-04-01 Published:2024-05-17
  • Contact: Ju-shang OU E-mail:zhaoxiaohua@bjut.edu.cn;oujushang1973@163.com

Abstract:

In this paper, we analyze the influencing factors of highway traffic accidents from four aspects: road alignment conditions, traffic operation status, weather environment conditions and aggressive driving behavior, using a random parameter logit model and focusing on the unobserved data heterogeneity. The results showed that plane alignment, longitudinal alignment, congestion index, speed coefficient of variation, weather conditions, wind level, frequency of aggressive acceleration behavior and frequency of aggressive deceleration behavior all had significant effects on freeway traffic accidents; meanwhile, unobserved heterogeneity was found in the four variables of longitudinal alignment, congestion index, frequency of aggressive acceleration behavior and frequency of aggressive deceleration behavior, and the frequency of aggressive deceleration behavior and congestion index, frequency of aggressive There were interactions between the frequency of rapid acceleration behavior and the frequency of rapid deceleration behavior. The paper provides a scientific and reasonable explanation for the causes of highway traffic accidents and provides theoretical support for the scientific management of highway accidents.

Key words: transportation planning and management, freeway, safety analysis, influencing factor, driving behavior, unobserved heterogeneity

CLC Number: 

  • U491.31

Fig.1

Schematic diagram of research road"

Table 1

Road section division rules"

路段单元平面线形纵面线形线形组合
1直线路段上坡路段直线-上坡路段
2直线路段下坡路段直线-下坡路段
3直线路段竖曲线路段直线-竖曲线路段
4曲线路段上坡路段曲线-上坡路段
5曲线路段下坡路段曲线-下坡路段
6曲线路段竖曲线路段曲线-竖曲线路段

Table 2

Statistical description of variables"

变量类型变量名称变量类别连续型变量离散型变量
平均值标准差最小值最大值样本量比例/%
因变量未发生事故80480.0
发生事故20120.0
路段长度0.4430.4780.0071.625
道路线形条件平面线形直线路段64464.1
曲线路段36135.9
纵面线形上坡路段39739.5
下坡路段29529.4
竖曲线路段31331.1
交通运行状态拥堵指数1.1390.6050.87212.018
速度变异系数0.0400.0440.0070.830
环境条件天气一般天气81080.6
小雨3219.4
风力等级0.9530.72304
激进驾驶行为急加速行为频率0.0030.0160.0000.0257
急减速行为频率0.0040.0400.0000.117

Table 3

Variable collinearity diagnosis"

变量VIF1/VIF
纵面线形—上坡1.6860.593
纵面线形—竖曲线1.5890.629
纵面线形—下坡1.2580.795
路段长度1.1720.853
速度变异系数1.1020.908
拥堵指数1.0800.926
平面线形1.0490.953
风力等级1.0400.961
天气1.0380.963
急加速行为频率1.0340.967
急减速行为频率1.0170.983

Table 4

Model calibration results"

变量名称多项logit随机参数logit平均边际系数
参数估计z-stat参数估计z-stat
截距项-7.153-11.29-7.465-11.19-
道路线形条件路段长度3.02113.023.13712.720.186 4
平面线形0.5632.490.4681.960.021 4
纵面线形-下坡---0.284-2.25-0.022 6
纵面线形-竖曲线1.4275.541.0992.820.059 4
纵面线形-竖曲线的标准差--1.5092.28-
交通运行状态拥堵指数2.0624.446.5042.510.175 6
拥堵指数的标准差--2.3082.34-
速度变异系数14.0472.7714.0462.680.041 5
环境条件天气1.6723.281.7483.130.006 8
风力等级0.9361.990.9751.870.002 5
激进驾驶行为急减速行为频率30.6961.85302.2623.120.001 8
急减速行为频率的标准差--368.0822.70-
急加速行为频率315.2764.65690.4213.220.011 1
急加速行为频率的标准差--643.3402.17-
模型估计样本量1 0051 005
仅含常数的对数似然-502.904-502.904
模型收敛的对数似然-287.138-278.793
R-sqrd0.4290.600
AIC592.3577.6

Fig.2

Probability density distribution of random parameters"

Table 5

Random parameter correlation coefficient matrix"

变量纵面线形-竖曲线拥堵指数急加速行为频率急减速行为频率
纵面线形-竖曲线1.0000.8080.2390.083
拥堵指数0.8081.0000.5120.561*
急加速行为频率0.2390.5121.0000.334*
急减速行为频率0.0830.561*0.334*1.000
1 杨洋. 考虑区域类型差异的高速公路事故风险识别与交通安全评价研究[D]. 北京:北京交通大学交通运输学院, 2020.
Yang Yang, Research on the method of freeway crash risk identification and comprehensive traffic safety evaluation considering the regional type difference[D]. Beijing: School of Traffic and Transportation, Beijing JiaotongUniversity, 2020.
2 Ye X, Pendyala R M, Shankar V, Konduri K C. A simultaneous equations model of crash frequency by severity level for freeway sections[J]. Accident Analysis & Prevention, 2013, 57: 140-149.
3 温惠英,张璇,曾强.高速公路单车事故等级的影响因素分析[J].华南理工大学学报:自然科学版,2021,49(8):12-18.
Wen Hui-ying, Zhang Xuan, Zeng Qiang. Influence factor analysis of freeway single-vehicle crash severity[J]. Journal of South China University of Technology(Natural Science), 2021, 49(8): 12-18.
4 曾强,王雪松,张璇,等.基于时空交互模型的高速公路季节事故频次影响因素分析[J].中国公路学报,2020,33(11):255-263.
Zeng Qiang, Wang Xue-song, Zhang Xuan, et al. Seasonal analysis of contributing factors to freeway crash frequency using a spatio-temporal interaction model[J]. China Journal of Highway and Transport, 2020, 33(11): 255-263.
5 陈昭明,徐文远,曲悠扬,陈伟.基于混合Logit模型的高速公路交通事故严重程度分析[J].交通信息与安全,2019,37(3):42-50.
Chen Zhao-ming, Xu Wen-yuan, Qu You-yang, et al.Severity of traffic crashes on freeways based on mixed Logit model[J]. Journal of Transport Information and Safety, 2019, 37(3), 42-50.
6 冯忠祥,雷叶维,张卫华,等. 道路环境对绕城高速公路交通事故严重程度影响分析[J].中国公路学报,2016,29(5):116-123.
Feng Zhong-xiang, Lei Ye-wei, Zhang Wei-hua, et al. Analysis on traffic accident severity influenced by road environment on circular highway[J]. China Journal of Highway and Transport, 2016, 29(5): 116-123.
7 National Highway Traffic Safety Administration. Aggressive drivers view traffic differently: capital beltway focus groups find[J]. Traffic Tech, 1998,175:1-8.
8 Islam M, Mannering F. A temporal analysis of driver-injury severities in crashes involving aggressive and non-aggressive driving[J]. Analytic Methods in Accident Research, 2020, 27: No.100128.
9 Guo M, Zhao X, Yao Y, et al. A study of freeway crash risk prediction and interpretation based on risky driving behavior and traffic flow data[J]. Accident Analysis & Prevention, 2021, 160: No.106328.
10 Shankar V, Mannering F, Barfield W. Effect of roadway geometrics and environmental factors on rural freeway accident frequencies[J]. Accident Analysis & Prevention, 1995, 27(3): 371-389.
11 Miaou, Pin Shaw, Lord, et al. Modeling traffic crash-flow relationships for intersections: Dispersion parameter, functional form, and Bayes versus empirical Bayes methods[J]. Transportation Research Record Journal of the Transportation Research Board, 2003, 1840:31-40.
12 Feng C, Chen S, Ma X. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data[J]. Journal of Safety Research, 2018, 65(6):153-159.
13 宋栋栋,杨小宝,祖兴水,等.基于均值异质性随机参数Logit模型的城市道路事故驾驶人受伤严重程度研究[J].交通运输系统工程与信息,2021,21(3):214-220.
Song Dong-dong, Yang Xiao-bao, Zu Xing-shui, et al. Examination of driver injury severity in urban crashes: a random parameters logit model with heterogeneity in means approach[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 214-220.
14 Federal Highway Administration. travel time reliability: making it there on time, all the time [R/OL]. [2006-12-10] .
15 赵晓华,亓航,姚莹,等. 基于可解释机器学习框架的快速路立交出口风险预测及致因解析[J].东南大学学报:自然科学版,2022,52(1):152-161.
Zhao Xiao-hua, Qi Hang, Yao Ying, et al. Risk prediction and causation analysis of expressway interchange exits based on interpretable machine learning framework[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(1): 152-161.
16 Xiong Y, Tobias J L, Mannering F L. The analysis of vehicle crash injury-severity data: a Markov switching approach with road-segment heterogeneity[J]. Transportation Research Part B: Methodological, 2014, 67: 109-128.
17 Buka S L, Viscidi E W, Susser E S. Handbook of Epidemiology[M]. New Yor: Elsiver, 2014.
18 Behnood A, Al-Bdairi N. Determinant of injury severities in large truck crashes: a weekly instability analysis[J]. Safety Science, 2020, 131: No.104911.
19 Islam M, Alnawmasi N, Mannering F. Unobserved heterogeneity and temporal instability in the analysis of work-zone crash-injury severities[J]. Analytic Methods in Accident Research, 2020, 28: No.100130.
20 Hou Q, Tarko A P, Meng X. Investigating factors of crash frequency with random effects and random parameters models: new insights from Chinese freeway study[J]. Accident Analysis & Prevention, 2018, 120(11):1-12.
[1] Ren-xiang CHEN,Chao-chao HU,Xiao-lin HU,Li-xia YANG,Jun ZHANG,Jia-le HE. Driver distracted driving detection based on improved YOLOv5 [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 959-968.
[2] Xiu-jian YANG,Xiao-han JIA,Sheng-bin ZHANG. Characteristics of mixed traffic flow taking account effect of dynamics of vehicular platoon [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 947-958.
[3] Lan WU,Le ZHAO,Gen LI. Analysis of merging behavior based on random parameter model with heterogeneity in variances [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 883-889.
[4] Bo-song FAN,Chun-fu SHAO. Urban rail transit emergency risk level identification method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 427-435.
[5] Jie HE,Chang-jian ZHANG,Xin-tong YAN,Chen-wei WANG,Yun-tao YE. Analyzing traffic crash risk of freeway characteristics based on micro⁃kinetic parameters [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 162-172.
[6] Chang-jiang ZHENG,Huan HU,Mu-qing DU. Design of multimodal express delivery network structure considering hub failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2304-2311.
[7] Ya-li ZHANG,Rui FU,Wei YUAN,Ying-shi GUO. Classification and recognition model of entering and leaving stops' driving style considering energy consumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2029-2042.
[8] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[9] Dian-hai WANG,You-wei HU,Zheng-yi CAI,Jia-qi ZENG,Wen-bin YAO. Dynamic road resistance model of intermittent flow on urban roads based on BPR function [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1951-1961.
[10] Zheng-wei GU,Pan ZHANG,Dong-ye LYU,Chun-li WU,Zhong YANG,Guo-jin TAN,Xiao-ming HUANG. Earthquake⁃induced residual displacement analysis of simply supported beam bridge based on numerical simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1711-1718.
[11] Yan-bo LI,Bai-song LIU,Bo-bin YAO,Jun-shuo CHEN,Kai-fa QU,Qi-sheng WU,Jie-ning CAO. Location of electrical changing station of expressway considering stochastic characteristics of road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1364-1371.
[12] Can-can SONG,Di-fei JING,Jun-feng XIE,Ke-xin KANG. Analysis on driving behaviors on flat curved sections of highways with advertising signs [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1345-1354.
[13] Ying HU,Chun-fu SHAO,Shu-ling WANG,Xi JIANG,Hai-rui SUN. Identification of road riding quality based on shared bike trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1040-1046.
[14] Zhan-zhong WANG,Ting JIANG,Jing-hai ZHANG. Evaluation of road transportation efficiency based on fuzzy double frontiers network model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 385-395.
[15] Jin XU,Yan-peng WANG,Hai-yuan CHEN,Xiao-bo ZHANG,Cun-shu PAN. Longitudinal driving characteristics and operating speed prediction model of cars on hairpin curves of mountainous roads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3432-3445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!