| 1 |
Donoho D L. Compressed sensing[J]. IEEE Transactions on information theory, 2006, 52(4):1289-1306.
|
| 2 |
Baraniuk R G, Candes E, Nowak R, et al. Compressive sampling [from the guest editors][J]. IEEE Signal Processing Magazine, 2008, 25(2):12-13.
|
| 3 |
He K, Wang Z H, Huang X, et al. Computational multifocal microscopy[J]. Biomedical Optics Express, 2018, 9(12):6477-6496.
|
| 4 |
Mairal J, Sapiro G, Elad M. Learning multiscale sparse representations for image and video restoration[J]. Multiscale Modeling & Simulation, 2008, 7(1): 214-241.
|
| 5 |
Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
|
| 6 |
Liu Y P, Wu S, Huang X L, et al. Hybrid CS-DMRI: periodic time-variant subsampling and omnidirectional total variation based reconstruction[J]. IEEE Transactions on Medical Imaging, 2017, 36(10): 2148-2159.
|
| 7 |
Sharma S K, Lagunas E, Chatzinotas S, et al. Application of compressive sensing in cognitive radio communications: a survey[J]. IEEE Communications Surveys & Tutorials, 2017, 18(3):1838-1860.
|
| 8 |
Ma J W, Liu X Y, Shou Z, et al. Deep tensor ADMM-Net for snapshot compressive imaging[C]∥2019 IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, South Korea,2019: 10222-10231.
|
| 9 |
Kulkarni K, Lohit S, Turaga P, et al. Reconnet: non-iterative reconstruction of images from compressively sensed measurements[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas, USA,2016: 449-458.
|
| 10 |
Yao H T, Dai F, Zhang S L, et al. DR2-Net: deep residual reconstruction network for image compressive sensing[J]. Neurocomputing, 2019,359(24): 483-493.
|
| 11 |
Zhang J, Ghanem B. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City, USA,2018: 1828-1837.
|
| 12 |
Shi W Z, Jiang F, Liu S H, et al. Image compressed sensing using convolutional neural network[J]. IEEE Transactions on Image Processing, 2020, 29: 375-388.
|
| 13 |
Zhang Z H, Liu Y P, Liu J N, et al. AMP-Net: denoising-based deep unfolding for compressive image sensing[J]. IEEE Transactions on Image Processing, 2021, 30: 1487-1500.
|
| 14 |
Hillar C J, Lim L H. Most tensor problems are NP-hard[J]. Journal of the ACM(JACM), 2013, 60(6): 1-39.
|
| 15 |
Li C B, Yin W T, Zhang Y. User's guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms[J]. CAAM Report,2009,20:46-47.
|
| 16 |
Chen C, Tramel E W, Fowler J E. Compressed-sensing recovery of images and video using multihypothesis predictions[C]∥2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers(ASILOMAR), Pacific Grove, USA, 2011: 1193-1198.
|
| 17 |
Mousavi A, Patel A B, Baraniuk R G. A deep learning approach to structured signal recovery[C]∥The 53rd Annual Allerton Conference on Communication, Control, and Computing(Allerton), Monticello, USA,2015: 1336-1343.
|
| 18 |
Sun Y B, Chen J W, Liu Q S. Dual-path attention network for compressed sensing image reconstruction[J]. IEEE Transactions on Image Processing, 2020, 29: 9482-9495.
|
| 19 |
Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
|
| 20 |
Vaswani A, Shazeer N, Parmar N. Attention is all you need[DB/OL].[2022-11-26]..
|
| 21 |
Zhang H, Ian G, Dimitris M, et al. Self-attention generative adversarial networks[C]∥International Conference on Machine Learning, Brussels, Belgium,2019: 7354-7363.
|
| 22 |
Khan S, Naseer M, Hayat M, et al. Transformers in vision: a survey[DB/OL].[2022-11-26]..
|
| 23 |
Radu T, Eirikur A, Gool Luc Van, et al. Ntire 2017 challenge on single image super-resolution: methods and results[C]∥Proceedings of the Ieee Conference on Computer Vision and Pattern Recognition Workshops,Hawaii, USA,2017: 114-125.
|
| 24 |
Bevilacqua M, Roumy A, Guillemot C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]∥Proceedings of the 23rd British Machine Vision Conference,Guildford,UK, 2012:No.135.
|
| 25 |
Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[C]∥International Conference on Curves and Surfaces, Beijing,China,2012: 711-730.
|
| 26 |
Huang J B, Abhishek S, Narendra A. Single image super-resolution from transformed self-exemplars[C]∥Proceedings of the Ieee Conference on Computer Vision and Pattern Recognition, Boston, USA,2015: 5197-5206.
|
| 27 |
Zhang J, Zhao D B, Gao W. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336-3351.
|
| 28 |
Metzler C A, Maleki A, Baraniuk R G. From denoising to compressed sensing[J]. IEEE Transactions on Information Theory, 2016, 62(9): 5117-5144.
|