Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (6): 1853-1860.doi: 10.13229/j.cnki.jdxbgxb.20230074

Previous Articles    

Displacement prediction of tunnel entrance slope based on variational modal decomposition and grey wolf optimized extreme learning machine

Bo LI1,2(),Xin LI1,Hong RUI3,Yuan LIANG1   

  1. 1.School of Traffic and Transportation Engineering,Dalian Jiaotong University,Dalian 116028,China
    2.Liaoning Province Engineering Research Center of High-speed Railway Technology in High Cold Region,Dalian Jiaotong University,Dalian 116028,China
    3.School of Electrical Engineering,Zhengzhou Railway Vocational & Technical College,Zhengzhou 450002,China
  • Received:2023-01-28 Online:2023-06-01 Published:2023-07-23

Abstract:

In view of the non-stationary and nonlinear characteristics of the slope displacement monitoring data of high-speed railway tunnel entrance and the poor prediction performance caused by random generation of initial parameters of extreme learning machine (ELM) model, an ELM displacement prediction model based on variational mode decomposition (VMD) and grey wolf optimizer (GWO) was established. The optimal decomposition number of VMD was determined by the adaptive decomposition layers of Empirical Mode Decomposition, and the displacement of periodic term, trend term and wave term were obtained by VMD. The GWO was used to search for the optimal weight matrix connecting the input and hidden layers and the threshold of the hidden layer neurons of ELM. Each subsequence was predicted and the cumulative displacement was obtained by combining the results. Example verification shows that the root-mean-square error, mean absolute percentage error and goodness of fit of VMD-GWO-ELM model are 0.3822 mm, 1.0047% and 0.9837, respectively. The VMD-GWO-ELM model has higher prediction accuracy and applicability.

Key words: road engineering, tunnel entrance slope, displacement prediction, variational mode decomposition, grey wolf optimized extreme learning machine

CLC Number: 

  • X928.03

Fig.1

Layout drawing of monitoring sites"

Fig.2

Slope displacement curve"

Fig.3

Results of EMD"

Fig.4

Results of VMD"

Fig.5

Displacement prediction flow chart of VMD-GWO-ELM model"

Fig.6

Prediction results of ELM"

Fig.7

Prediction results of GWO-ELM test set"

Fig.8

Prediction results of VMD-GWO-ELM test set"

Table 1

Evaluation index of prediction model"

预测模型RMSE/mmMAPE/%R2
ELM1.58833.66550.8767
GWO-ELM0.94352.51790.9520
VMD-GWO-ELM0.38221.00470.9837
1 黄华, 姜波, 罗永刚, 等.高陡边坡铁路隧道洞口危岩落石整治措施研究[J]. 高速铁路技术, 2018, 9(6): 65-69.
Huang Hua, Jiang Bo, Luo Yong-gang, et al. Study on treatment measures for rockfall at railway tunnel portal on high and steep slope[J]. High Speed Railway Technology, 2018, 9(6): 65-69.
2 李继昀. 冻土地区铁路隧道洞口边仰坡变形研究[D]. 兰州: 兰州交通大学土木工程学院,2020.
Li Ji-yun. Study on deformation of upward slope at tunnel portal of railway tunnel in frozen soil area[D]. Lanzhou: School of Civil Engineering, Lanzhou Jiaotong University, 2020.
3 戈海玉, 涂劲松. 边坡位移预测的非线性组合模型及应用[J]. 岩土力学, 2011, 32(6): 1808-1812.
Ge Hai-yu, Tu Jin-song. Nonlinear coupled model for predicting slope displacement and its application[J]. Rock and Soil Mechanics, 2011, 32(6): 1808-1812.
4 张正虎, 袁孟科, 邓建辉, 等. 基于改进灰色-时序分析时变模型的边坡位移预测[J]. 岩石力学与工程学报, 2014, 33(): 3791-3797.
Zhang Zheng-hu, Yuan Meng-ke, Deng Jian-hui, et al. Displacement prediction of slope based on improved grey-time series time-varying model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.2): 3791-3797.
5 王述红, 任艺鹏, 邢观华. 一种改进AFSA-Elman边坡位移预测网络[J]. 东北大学学报: 自然科学版, 2019, 40(1): 115-120.
Wang Shu-hong, Ren Yi-peng, Xing Guan-hua. An improved AFSA-elman slope displacement prediction network[J]. Journal of Northeastern University(Natural Science), 2019, 40(1): 115-120.
6 唐菲菲, 唐天俊, 朱洪洲, 等. 结合注意力机制和Bi-LSTM的降雨型滑坡位移预测[J]. 测绘通报, 2022(9): 74-79, 104.
Tang Fei-fei, Tang Tian-jun, Zhu Hong-zhou, et al. Rainfall landslide deformation prediction based on attention mechanism and Bi-LSTM[J]. Bulletin of Surveying and Mapping, 2022(9): 74-79, 104.
7 邓冬梅, 梁烨, 王亮清, 等. 基于集合经验模态分解与支持向量机回归的位移预测方法: 以三峡库区滑坡为例[J]. 岩土力学, 2017, 38(12): 3660-3669.
Deng Dong-mei, Liang Ye, Wang Liang-qing, et al. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression—a case of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2017, 38(12): 3660-3669.
8 金爱兵, 张静辉, 孙浩, 等. 基于SSA-SVM的边坡失稳智能预测及预警模型[J]. 华中科技大学学报: 自然科学版, 2022, 50(11): 142-148.
Jin Ai-bing, Zhang Jing-hui, Sun Hao, et al. Intelligent prediction and alert model of slope instability based on SSA-SVM[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(11): 142-148.
9 汪磊, 谢彦初, 孙德安, 等. 基于GS-SVM的膨胀土边坡防护工程健康预测模型[J]. 中南大学学报: 自然科学版, 2022, 53(1): 250-257.
Wang Lei, Xie Yan-chu, Sun De-an, et al. Health prediction model of expansive soil slope protection works based on GS-SVM[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 250-257.
10 周超, 殷坤龙, 黄发明. 混沌序列WA-ELM耦合模型在滑坡位移预测中的应用[J]. 岩土力学, 2015, 36(9): 2674-2680.
Zhou Chao, Yin Kun-long, Huang Fa-ming. Application of the chaotic sequence WA-ELM coupling model in landslide displacement prediction[J]. Rock and Soil Mechanics, 2015, 36(9): 2674-2680.
11 高彩云, 高宁. 改进极限学习机的不同类型滑坡位移预测[J]. 西安科技大学学报, 2018, 38(4): 683-689.
Gao Cai-yun, Gao Ning. Various types of landslide displacement prediction based on improved extreme learning machine[J]. Journal of Xi'an University of Science and Technology, 2018, 38(4): 683-689.
12 Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning & Cybernetics, 2011, 2(2): 107-122.
13 蔡改贫, 刘鑫, 罗小燕, 等. 基于多尺度模糊熵和改进极限学习机的球磨机负荷状态识别[J]. 吉林大学学报: 工学版, 2020, 50(6): 2055-2067.
Cai Gai-pin, Liu Xin, Luo Xiao-yan,et al. Load state identification method for ball mills based on modified multiscale fuzzy entropy and improved extreme learning machine[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(6): 2055-2067.
14 李骅锦, 许强, 何雨森, 等. "阶跃式"滑坡位移预测及阈值分析的ARMA-(LASSO-ELM)-Copula模型[J]. 岩石力学与工程学报, 2017, 36(): 4075-4084.
Li Hua-jin, Xu Qiang, He Yu-sen, et al. An ARMA-(LASSO-ELM)-Copula framework for landslide displacement prediction and threshold computing of the displacement of step-like landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Sup.2): 4075-4084.
15 温廷新, 朱静. 基于SAPSO-ELM的边坡稳定性预测[J].安全与环境学报, 2018, 18(6): 2146-2150.
Wen Ting-xin, Zhu Jing. On the prediction for the slope stability based on the SAPSO-ELM[J]. Journal of Safety and Environment, 2018, 18(6): 2146-2150.
16 曹博, 汪帅, 宋丹青, 等. 基于蚁群算法优化极限学习机模型的滑坡位移预测[J]. 水资源与水工程学报, 2022, 33(2): 172-178.
Cao Bo, Wang Shuai, Song Dan-qing, et al. Landslide displacement prediction based on extreme learning machine optimized by ant colony algorithm[J]. Journal of water resources & water engineering, 2022, 33(2): 172-178.
17 Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61.
18 任超, 梁月吉, 庞光锋, 等. 经验模态分解和遗传小波神经网络法用于边坡变形预测[J]. 测绘科学技术学报, 2014, 31(6): 551-555.
Ren Chao, Liang Yue-ji, Pang Guang-feng, et al. Empirical mode decomposition and genetic wavelet neural network method for slope deformation prediction[J]. Journal of Surveying and Mapping Science and Technology, 2014, 31(6): 551-555.
19 Dragomiretskiy K, Zosso D. Variational mode de-composition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
20 王进花, 胡佳伟, 曹洁, 等. 基于自适应变分模态分解和集成极限学习机的滚动轴承多故障诊断[J]. 吉林大学学报: 工学版, 2022, 52(2): 318-328.
Wang Jin-hua, Hu Jia-wei, Cao Jie,et al. Multi-fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328.
21 徐峰, 范春菊, 徐勋建, 等. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395.
Xu Feng, Fan Chun-ju, Xu Xun-jian, et al. Displacement prediction of landslide based on variational mode decomposition and AMPSO-SVM coupling model[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1388-1395.
22 Huang G B, Zhu Q Y, Siew C. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
23 张娜, 任强, 刘广忱, 等. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55(5): 57-65.
Zhang Na, Ren Qiang, Liu Guang-chen, et al. Short-term PV power forecasting based on VMD-GWO-ELMAN[J]. China Electric Power, 2022, 55(5): 57-65.
24 刘辉, 李侯君, 刘雨薇, 等. 基于VMD和GWO-SVR的电力负荷预测方法[J]. 现代电子技术, 2020, 43(23): 167-172.
Liu Hui, Li Hou-jun, Liu Yu-wei, et al. Power load forecasting method based on VMD and GWO⁃SVR[J]. Modern Electronic Technology, 2020, 43(23): 167-172.
[1] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[2] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[3] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[4] Ning WANG,Tao MA,Feng CHEN,Yong-qiang FU. Key factors affecting smart aggregate perception and data analysis methods [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1799-1808.
[5] Zhe ZHANG,Wei FU,Jun-hui ZHANG,Chao HUANG. Long⁃term characterising plastic behavior of thawed subgrade clay under cyclic loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1790-1798.
[6] Qing-xia ZHANG,Ji-lin HOU,Xin-hao AN,Xiao-yang HU,Zhong-dong DUAN. Road roughness identification method based on vehicle impulse response [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1765-1772.
[7] Ping JIANG,Ye-wen CHEN,Xian-hua CHEN,Wei-qing ZHANG,Na LI,Wei WANG. Unconfined compression behavior of modified lime stabilized soil under dry wet and freeze⁃thaw cycles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1809-1818.
[8] Chun-di SI,Ya-ning CUI,Zhong-yin XU,Tao-tao FAN. Meso⁃mechanical behavior analysis of asphalt bridge deck pavement after interlayer bonding failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1719-1728.
[9] Yan LI,Jiu-peng ZHANG,Zi-xuan CHEN,Guo-jing HUANG,Pei WANG. Evaluation of asphalt pavement performance based on PCA⁃PSO⁃SVM [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1729-1735.
[10] Xiao-kang ZHAO,Zhe HU,Jiu-peng ZHANG,Jian-zhong PEI,Ning SHI. Research progress in intelligent monitoring of pavement icing based on optical fiber sensing technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1566-1579.
[11] Bing HUI,Xin-yi YANG,Le-yang ZHANG,Yang LI. Influence of detecting track offset on calculation error of asphalt pavement wearing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1756-1764.
[12] Jue LI,An-shun ZHANG,Jun-hui ZHANG,Jun-feng QIAN. Model testing and numerical analysis of dynamic response of graded crushed rock base structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1782-1789.
[13] Zhuang-zhuang LIU,Wen-qing ZHENG,Jian ZHENG,Yi-zheng LI,Peng-yu JI,Ai-min SHA. Pavement surface temperature monitoring method based on gridding approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1746-1755.
[14] Sui-ning ZHENG,Rui HE,Tian-yu LU,Zi-yi XU,Hua-xin CHEN. Preparation and evaluation of RET/rubber composite modified asphalt and asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1381-1389.
[15] Hai-bin WEI,Shuan-ye HAN,Hai-peng BI,Qiong-hui LIU,Zi-peng MA. Intelligent sensing road active ice and snow removal system and experimental technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1411-1417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!