Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 297-306.doi: 10.13229/j.cnki.jdxbgxb.20230267
Yuan-ning LIU1,2(
),Zi-nan ZANG1,2,Hao ZHANG1,2(
),Zhen LIU1,3
CLC Number:
| 1 | Crick F. Central dogma of molecular biology[J]. Nature, 1970, 227: 561-563. |
| 2 | Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription[J]. Science, 2007, 316: 1484-1488. |
| 3 | Sharp P. The centrality of RNA[J]. Cell, 2009, 136: 577-580. |
| 4 | Zuker M. Mfold Web server for nucleic acid folding and hybridization prediction[J]. Nucleic Acids Research, 2003, 31: 3406-3415. |
| 5 | Lorenz R, Bernhart S H, Höner Zu Siederdissen C, et al. ViennaRNA Package 2.0[J]. Algorithms for Molecular Biology, 2011, 6: No.26. |
| 6 | Mathews D H, Turner D H. Prediction of RNA secondary structure by free energy minimization[J]. Current Opinion in Structural Biology, 2006, 16: 270-278. |
| 7 | Huang L, Zhang H, Deng D, et al. LinearFold: linear-time approximate RNA folding by 5'-to-3' dynamic programming and beam search[J]. Bioinformatics, 2019, 35: i295-i304. |
| 8 | Brierley I, Pennell S, Gilbert R J C. Viral RNA pseudoknots: versatile motifs in gene expression and replication[J]. Nature Reviews Microbiology, 2007, 5: 598-610. |
| 9 | Bernhart S H, Hofacker I L, Will S, et al. RNAalifold: improved consensus structure prediction for RNA alignments[J]. BMC Bioinformatics, 2008, 9: No.474. |
| 10 | Knudsen B, Hein J. Pfold: RNA secondary structure prediction using stochastic context-free grammars[J]. Nucleic Acids Research, 2003, 31: 3423-3428. |
| 11 | Do C B, Woods D A, Batzoglou S. CONTRAfold: RNA secondary structure prediction without physics-based models[J]. Bioinformatics, 2006, 22: e90-e98. |
| 12 | Zakov S, Goldberg Y, Elhadad M, et al. Rich parameterization improves RNA structure prediction. [J]. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 2011, 6577: 546-562. |
| 13 | Zhang H, Zhang C, Li Z, et al. A new method of RNA secondary structure prediction based on convolutional neural network and dynamic programming[J]. Frontiers in Genetics, 2019, 10: No.467 |
| 14 | Chen X, Li Y, Umarov R, et al. RNA secondary structure prediction by learning unrolled algorithms [C]∥Proceedings of the International Conference on Learning Representations(ICLR), Addis Ababa, Ethiopia, 2020: 1-19. |
| 15 | Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction using deep learning with thermodynamic integration[J]. Nature Communications, 2021, 12(1): No. 941. |
| 16 | Singh J, Hanson J, Paliwal K, et al. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning[J]. Nature Communications, 2019, 10(1): No. 5407. |
| 17 | Tan Z, Fu Y, Sharma G, et al. TurboFold Ⅱ: RNA structural alignment and secondary structure prediction informed by multiple homologs[J]. Nucleic Acids Research, 2017, 45(20): 11570-11581. |
| 18 | Sloma M, Mathews D. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures[J]. RNA, 2016, 22(12): 1808-1818. |
| 19 | Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9: 1735-1780. |
| 20 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000-6010. |
| 21 | Fu L, Cao Y, Wu J, et al. UFold: fast and accurate RNA secondary structure prediction with deep learning[J]. Nucleic Acids Research, 2022, 50(3): No.e14. |
| 22 | Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation [C]∥Proceedings of the Medical Image Computing and Computer-Assisted Intervention(MICCAI), Munich, Germany, 2015: 234-241. |
| [1] | Hui-zhi XU,Shi-sen JIANG,Xiu-qing WANG,Shuang CHEN. Vehicle target detection and ranging in vehicle image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 185-197. |
| [2] | Lu Li,Jun-qi Song,Ming Zhu,He-qun Tan,Yu-fan Zhou,Chao-qi Sun,Cheng-yu Zhou. Object extraction of yellow catfish based on RGHS image enhancement and improved YOLOv5 network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2638-2645. |
| [3] | Lei ZHANG,Jing JIAO,Bo-xin LI,Yan-jie ZHOU. Large capacity semi structured data extraction algorithm combining machine learning and deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2631-2637. |
| [4] | Hong-wei ZHAO,Hong WU,Ke MA,Hai LI. Image classification framework based on knowledge distillation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2307-2312. |
| [5] | Yun-zuo ZHANG,Yu-xin ZHENG,Cun-yu WU,Tian ZHANG. Accurate lane detection of complex environment based on double feature extraction network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1894-1902. |
| [6] | Bai-you QIAO,Tong WU,Lu YANG,You-wen JIANG. A text sentiment analysis method based on BiGRU and capsule network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2026-2037. |
| [7] | Xin-gang GUO,Ying-chen HE,Chao CHENG. Noise-resistant multistep image super resolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2063-2071. |
| [8] | Li-ping ZHANG,Bin-yu LIU,Song LI,Zhong-xiao HAO. Trajectory k nearest neighbor query method based on sparse multi-head attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1756-1766. |
| [9] | Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776. |
| [10] | Yan-feng LI,Ming-yang LIU,Jia-ming HU,Hua-dong SUN,Jie-yu MENG,Ao-ying WANG,Han-yue ZHANG,Hua-min YANG,Kai-xu HAN. Infrared and visible image fusion based on gradient transfer and auto-encoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1777-1787. |
| [11] | Yu-kai LU,Shuai-ke YUAN,Shu-sheng XIONG,Shao-peng ZHU,Ning ZHANG. High precision detection system for automotive paint defects [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1205-1213. |
| [12] | Li-ming LIANG,Long-song ZHOU,Jiang YIN,Xiao-qi SHENG. Fusion multi-scale Transformer skin lesion segmentation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1086-1098. |
| [13] | Yun-zuo ZHANG,Wei GUO,Wen-bo LI. Omnidirectional accurate detection algorithm for dense small objects in remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1105-1113. |
| [14] | Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332. |
| [15] | Xiong-fei LI,Zi-xuan SONG,Rui ZHU,Xiao-li ZHANG. Remote sensing change detection model based on multi⁃scale fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 516-523. |
|
||