Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 132-140.doi: 10.13229/j.cnki.jdxbgxb.20230326

Previous Articles    

Optimization of cross-line train operation across the urban rail transit loop line

Pei-ning TIAN1,2(),Rui-yong TONG1,2,Hai-peng WANG3,Bao-hua MAO1,2(),Hao-xiang ZHANG4,Xia LU1,2   

  1. 1.Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Beijing Jiaotong University,Beijing 100044,China
    2.Integrated Transportation Research Centre of China,Beijing Jiaotong University,Beijing 100044,China
    3.Intelligent Transportation Research Centre,Research Institute of Highway Ministry of Transport,Beijing 100088,China
    4.Orbital Courtyard,Beijing Urban Construction Design and Development Group Co. ,Ltd. ,Beijing 100037,China
  • Received:2023-04-08 Online:2025-01-01 Published:2025-03-28
  • Contact: Bao-hua MAO E-mail:21114061@bjtu.edu.cn;bhmao@bjtu.edu.cn

Abstract:

To alleviate the pressure on transfer station and enhance the service level of urban rail transport, the planning model for the cross-line operation scheme between the loop line and radial line was constructed by taking the combination of loop line and radial line as the research object. The objective was to maximize the number of direct passengers, minimize total passenger travel time and the distance traveled by trains. Taking into account constraints such as departure intervals, passenger load factors, and the number of trains, and considering passenger flow distribution based on the characteristics of the loop line, a genetic algorithm was designed that includes OD passenger flow distribution to solve the model. The case study shows that compared to independent operation, the cross-line operation between the loop line and radial line can optimize the allocation of capacity resources and improve passenger directness and service quality. When the coefficient weights of the objective function were set to a ratio of 3:1:1, 33.76% (11,000 passengers) of the transfer passengers can avoid transfers and achieve direct travel, resulting in a 1.11% reduction in total passenger travel time and a 1.05% reduction in distance traveled by trains.

Key words: urban rail transit, loop line, cross-line operation, operation scheme, genetic algorithms, passenger flow distribution

CLC Number: 

  • U292.4

Fig.1

Diagram of radial line and loop line"

Table 1

Definition of model-related symbols"

符号含义符号含义
A=mode1,mode2运营模式集合,mode1代表独立运营模式,mode2代表跨线运营模式TPi,Pj起点为Pi区段、终点为Pj区段乘客的总出行时间/min
S=s1,s2,???,str,???,sa,???,sn组合线路的车站集合,str代表换乘站,sa代表跨线交路折返站,tra分别为换乘站、跨线交路折返站编号LAA模式下的车辆走行公里数/(veh·km-1
S'具有折返能力的车站集合UAA模式下的小时运用列车数/列
MhMb环线、半径线的车站数/站m列车编组数/(辆·列-1
od,o,dSo表示乘客的起点站,d表示乘客的终点站C车辆额定载员/(人·辆-1
J=N,S,B,E交路集合,分别表示外环交路、内环交路、半径线交路、跨线交路lhlb环线、半径线的线路长度/km
fJAA模式下J交路的开行频率/[(对·h-1-1lii站的站间距/km
qod,o,dS以车站o为起点、d为终点的OD客流量/(人·h-1lz折返走行距离/km
qEqZ跨线直达乘客数、跨线需求总乘客数/人tJJ交路的列车周转时间/min
Pi,i=1,2,3i个OD区段tttztr停站、折返、换乘走行时间/min
QPi+Pi区段上行区间的小时断面客流量集合/(人·h-1ηmax最大满载率/%
QPi-Pi区段下行区间的小时断面客流量集合/(人·h-1fminfmax最小、最大发车频率/[(对·h-1-1
TAA模式下的乘客总出行时间/minωi,i=1,2,3i个目标的权重系数

Table 2

Routing of passengers under cross-line operation mode"

OD区段dP1dP2dP3
oP1B?or?EEB?or?ES,str+λ<dEN,o>d,str+λd
oP2EE?or?N,o<dE?or?S,o>dN,do+λ??S,d>o+λN,d<o+λ??S,d>o+λS?or?N,d=o+λ
oP3NB?or?E,str+λ<oSE,o>d,str+λoN,do+λS,d>o+λN,do+λ??S,d>o+λN,d<o+λ??S,d>o+λS?or?N,d=o+λ

Table 3

Passenger flow volume for each routing"

OD区段dP1dP2dP3
oP1d=1stro=1strqodd=strsao=1str-1qodd=str+λ+1sno=1str-1qod?d=sastr+λo=1str-1qod
oP2d=1str-1o=strsaqodd=o+1sao=strsaqod?d=stro-1o=strsaqod

d=sa+1o+λo=strsaqod?d=o+λ+1sno=strsaqod

d=sa+1o+λo=strsaqod?d=o+λ+1sno=strsaqodd=o+λsno=strsaqod

oP3d=1str-1o=str+λ+1snqodd=1str-1o=sastr+λqodo=d+λ+1snd=strsaqod?o=sa+1d+λd=strsaqod

d=o+1sno=sa+1snqod?d=sa+1o-1o=sa+1snqod

d=sa+1o+λo=strsaqod?d=o+λ+1sno=strsaqodd=o+λsno=strsaqod

Table 4

Average travel time for passengers in the cross-line operation mode"

OD区段dP1dP2dP3
oP130/fBmode2+fEmode230/fEmode230/fBmode2+fEmode2+tr+30/fSmode230/fEmode2+60/fNmode2+fEmode2
oP230/fEmode230/fNmode2+fEmode2?30/fSmode2+fEmode230/fNmode2?30/fSmode230/fNmode2?30/fSmode230/fNmode2+fSmode2
oP330/fBmode2+fEmode2+tr+30/fNmode230/fSmode2+60/fSmode2+fEmode230/fNmode2?30/fSmode230/fNmode2?30/fSmode230/fNmode2?30/fSmode230/fNmode2+fSmode2

Fig.2

Diagram of chromosome coding"

Fig.3

Diagram of the case lines"

Fig.4

OD passenger flow of the case lines"

Fig.5

Algorithm solving process"

Table 5

Solving result"

运营模式开行方案

函数目

标值

乘客出行时间/min车辆走行公里数/(veh·km-1跨线直达乘客数/人运用列车数/列
safBAfEAfNAfSA
独立运营-14-1414-372 8201 148-41
跨线运营178612120.835 0373 1901 14813 45541

Table 6

Solving results for different weights"

ω1:ω2:ω3开行方案

目标函

数值

乘客出行时间变化率/%

车辆走行公里数

变化率/%

跨线直达乘客数占比运用车数/辆
safBAfEAfNAfSA
3:3:4178612120.835 00.10%041.34%41
2:2:1158612120.931 12.16%-2.53%33.76%40
3:1:1157712120.923 7-1.11%-1.05%33.76%41
1:3:1138612120.930 04.46%-5.05%24.41%39
1 Shi R J, Mao B H, Ding Y, et al. Timetable optimization of rail transit loop line with transfer coordination[J]. Discrete Dynamics in Nature and Society, 2016:No. 4627094.
2 田静.城市轨道交通网络化运营中的信号系统互联互通方案[J].城市轨道交通研究,2018,21(Sup.1):28-30.
Tian Jing. Interconnection and interoperability scheme for rail transit autonomous network operation[J]. Urban Mass Transit, 2018, 21(Sup.1): 28-30.
3 乐梅,王宁宁,杨婧,等.城市轨道交通互联互通网络化行车组织方案初探[J].都市快轨交通,2020,33(4):9-13, 44.
Le Mei, Wang Ning-ning, Yang Jing, et al. A preliminary study on the network operation scheme for the CBTC interconnection[J]. Urban Rapid Rail Transit, 2020, 33(4): 9-13, 44.
4 Ju Y N, Yuan H H, Li Z P, et al. Multilayer structures and resilience evaluation for multimode regional rail transit system[J]. IET Intelligent Transport Systems, 2022, 16(7): 843-859.
5 郭建民,韩林飞,周建国,等.Y形共线模式下轨道交通列车开行方案研究[J].铁道工程学报,2017,34(2):87-92.
Guo Jian-min, Han Lin-fei, Zhou Jian-guo, et al. Research on the operation scheme for rail transit with the Y shaped collinear mode[J]. Journal of Railway Engineering Society, 2017, 34(2): 87-92.
6 杨安安,汪波,陈艳艳,等.基于能力影响的城市轨道交通跨线列车开行方案研究[J].交通运输系统工程与信息,2017,17(6):221-227.
Yang An-an, Wang Bo, Chen Yan-yan, et al. Plan of cross-line train in urban rail transit based on the capacity influence[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(6): 221-227.
7 Yang A A, Wang B, Huang J L, et al. Service replanning in urban rail transit networks: cross-line express trains for reducing the number of passenger transfers and travel time[J]. Transportation Research Part C, 2020, 115: No.102629.
8 Sun L S, Lu H B, Xu Y, et al. Fairness-oriented train service design for urban rail transit cross-line operation[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 606: No.128124.
9 曾庆文,彭其渊.考虑多编组的城轨列车跨线运营开行方案研究[J].铁道科学与工程学报,2023,20(3):878-889.
Zeng Qing-wen, Peng Qi-yuan. Study on the cross-line train plan in urban rail transit considering the multi-group train[J]. Journal of Railway Science and Engineering, 2023, 20(3): 878-889.
10 罗钦,林彬,顾孟琪,等.基于时间成本的城轨列车跨线开行方案建模[J].深圳大学学报:理工版,2022,39(5):600-607.
Luo Qin, Lin Bin, Gu Meng-qi, et al. Modeling of cross line operation of urban rail transit trains based on passenger travel time[J]. Journal of Shenzhen University Science and Engineering, 2022, 39(5): 600-607.
11 黄俊生,陈垚,张安英,等.考虑互联互通的城市轨道交通网络列车开行方案优化[J].铁道科学与工程学报,2023,20(5):1587-1597.
Huang Jun-sheng, Chen Yao, Zhang An-ying, et al. Optimization of urban rail network operation scheme considering interconnection[J]. Journal of Railway Science and Engineering, 2023, 20(5): 1587-1597.
12 Ma Y Q. Optimization algorithm of urban rail transit network route planning using deep learning technology[J]. Computational Intelligence and Neuroscience, 2022, 2022: No.2024686.
13 Li L, Meng X L, Cheng X Q, et al. Train service plan design under the condition of multimodal rail transit systems integration and interconnection[J]. Journal of Advanced Transportation, 2023 (1): No.8275191.
14 吴文静,熊康贝,贾洪飞,等.城市群轨道交通直通线路优化设置方法[J].吉林大学学报:工学版, 2024, 54(3): 711-718.
Wu Wen-jing, Xiong Kang-bei, Jia Hong-fei, et al. Optimal setting method of rail transit through lines in urban agglomeration[J]. Journal of Jilin University(Engineering and Technology Edition),2024, 54(3): 711-718.
15 田佩宁,毛保华,周琪,等.城市轨道交通不成对开行方案研究[J].深圳大学学报:理工版,2023,40(5):521-528.
Tian Pei-ning, Mao Bao-hua, Zhou Qi, et al. The unpaired operation of urban rail transit[J]. Journal of Shenzhen University(Science and Engineering),2023,40(5):521-528.
16 魏润斌,贾顺平,毛保华,等.考虑满载率均衡的城市轨道交通直通运营开行方案优化[J].哈尔滨工业大学学报,2023,55(3):68-77.
Wei Run-bin, Jia Shun-ping, Mao Bao-hua, et al. Train planning optimization for through operation of urban rail transit considering the balance of load factors [J]. Journal of Harbin Institute of Technology, 2023, 55(3): 68-77.
17 Huang K, Liao F X, Gao Z Y. An integrated model of energy-efficient timetabling of the urban rail transit system with multiple interconnected lines[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: No.103171.
18 许得杰, 毛保华, 陈绍宽, 等. 考虑开行比例的大小交路列车开行方案优化[J]. 交通运输工程学报, 2021, 21(2):173-186.
Xu De-jie, Mao Bao-hua, Chen Shao-kuan, et al. Optimization of operation scheme for full-length and short-turn routings considering operation proportion[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 173-186.
19 刘剑锋. 基于换乘的城市轨道交通网络流量分配建模及其实证研究[D]. 北京: 北京交通大学交通运输学院, 2012.
Liu Jian-feng. Transfer-based modeling flow assignment with empirical analysis for urban rail transit network[D]. Beijing: School of Transportation, Beijing Jiaotong University, 2012.
[1] Na ZHANG,Feng CHEN,Jian-po WANG,Ya-di ZHU. Recognition of travel patterns for urban rail transit passengers based on spatiotemporal sequence similarity [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2588-2599.
[2] Bo-song FAN,Chun-fu SHAO. Urban rail transit emergency risk level identification method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 427-435.
[3] Lei ZHANG,Zi-mu LI,Yong-yao YAN,Fei DOU,Hong-jie LIU. Brake control algorithm for virtually coupled trains based on multi vehicle cooperation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 3027-3036.
[4] Jing WANG,Feng WAN,Chun-jiao DONG,Chun-fu SHAO. Modelling on catchment area and attraction intensity of urban rail transit stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 439-447.
[5] Qing-yong WANG,Wei-qiang QU. Optimization algorithm of urban rail transit operation scheduling based on linear programming [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3446-3451.
[6] ZHAO Xue-yu, YANG Jia-qi, PENG Ya-mei. Competitive and cooperative relationship evolution mechanism between urban rail transit and traditional bus [J]. 吉林大学学报(工学版), 2017, 47(3): 756-764.
[7] YAO Xiang-ming, ZHAO Peng, YU Dan-dan. Dynamic origin-destination matrix estimation for urban rail transit based on averaging strategy [J]. 吉林大学学报(工学版), 2016, 46(1): 92-99.
[8] CAO Yang, ZHAO Shu-zhi, TIAN Qing-fei. Urban rail transit subsidy policy based on maximum welfare [J]. , 2012, (03): 618-622.
[9] ZHAO Shu-zhi, CAO Yang, TIAN Qing-fei. Urban rail transit scheduling decision based on information fusion [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 85-88.
[10] CAO Shou-hua,YUAN Zhen-zhou,ZHAO Dan. Queuing mechanism of passengers at exit stairs of urban rail transit [J]. 吉林大学学报(工学版), 2009, 39(06): 1463-1468.
[11] Yang Li-ya;Shao Chun-fu . Integrated forecasting model for real estate price along urban rail transit based on BP neural network and Markov chain [J]. 吉林大学学报(工学版), 2008, 38(03): 514-0519.
[12] Wei;Li Wen-hui;Xia Yun-fei. Research on convex polyhedron collision detection algorithm based on nonlinear programming

Zhao

[J]. 吉林大学学报(工学版), 2008, 38(03): 676-0679.
[13] Lin Lin; Wang Shu-xun; Wei Xiao-li. Gaussian mixture model training method based on genetic algorithms and fuzzy approach [J]. 吉林大学学报(工学版), 2006, 36(06): 967-0972.
[14] ZHAI Yi-feng, LI Hong-yan, LIU Han-bing, YUAN Xi-min. Method for optimizing initial weights of ANNs by GAs [J]. 吉林大学学报(工学版), 2003, (2): 45-50.
[15] CHEN Jian-jun, LI Ming-zhe, SUI Zhen, SU Shi-zhong. GA-based Optimization of Transition Region for Section Forming [J]. 吉林大学学报(工学版), 2001, (2): 12-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!