Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (2): 603-613.doi: 10.13229/j.cnki.jdxbgxb.20230447

Previous Articles    

Identifying urban functional structures using time-series taxi data

Shu-hong MA(),Jun-jie ZHANG,Xi-fang CHEN,Guo-mei LIAO   

  1. College of Transportation Engineering,Chang'an University,Xi'an 710064,China
  • Received:2023-05-06 Online:2025-02-01 Published:2025-04-16

Abstract:

In response to the lack of dynamic characterization of residents as the main body of urban spatial activities in traditional functional area identification methods, this paper proposes a functional attribute identification method for urban parcels based on taxi trajectory and POI data. Firstly, a class of departure and arrival time vectors are constructed respectively. Then, the residents' travel patterns is clustered by an improved dynamic time regularization and clustering algorithm. Finally, the functional attributes of the blocks are identified by combining the residents' travel curve characteristics, POI density and enrichment index. Taking Xi'an city as an example, the departure and arrival pattern characteristics of residents in different regions on weekdays and rest days are discussed to identify the functional attributes of different blocks within the city. The results show that different departure and arrival patterns represent different peaks in the morning peak, afternoon peak, evening peak, night and early morning, and the corresponding blocks show a certain circle structure in the spatial distribution and their respective functional tendencies. The identification of the functional attributes of the parcels using the departure-arrival pattern characteristics of residents and POI information has a complementary effect, and the functional attributes show a ternary structure of "employment-residence-rest", which also reflects the spatial and temporal changes of different functional areas and people's activities. The results of the study are useful for planning departments to reallocate transport resources and optimize the spatial structure of the city.

Key words: transportation planning and management, time series clustering, taxi track data, residential travel characteristics, functional area identification

CLC Number: 

  • U491.12

Fig.1

Map of the central city of Xi'an"

Fig.2

Technical route of research"

Table 1

O-point time series with different number of clusters K corresponding to Silhouette and Dunn"

K划分簇样本量分布SilhouetteDunn
2[381,186]0.8220.003 5
3[255,73,250]0.7750.002 9
4[161,66,150,190]0.7320.002 0
5[171,139,76,65,116]0.7150.002 5
6[181,106,111,129,35,5]0.6940.002 1
7[165,80,84,98,9,126,5]0.6420.001 5
8[152,114,91,153,29,20,7,1]0.6330.000 9
9[140,92,112,63,87,36,28,7,2]0.6010.001 1

Fig.3

Different departure-arrival mode curves"

Fig.4

Distribution of blocks with different departure-arrival patterns"

Table 3

Sample sizes by departure-arrival mode"

OD
聚类0聚类1聚类2聚类3聚类4
聚类024726037
聚类1152145473
聚类24301800
聚类35018452
聚类4357491533

Fig.5

Curves of traveling patterns across blocks during the working day"

Table 4

The POI density in different functional areas"

POI类别O1-D4O4-D2O0-D1O1-D2O3-D3O0-D4O4-D0O2-D1O3-D2O2-D2
住宿服务14.3632.0623.5714.5818.0714.8417.865.68.0644.83
体育休闲4.119.987.684.63.075.8410.3412.974.2214.78
公司企业15.5239.9222.9121.638.0919.1134.624.4727.78107.06
医疗保健14.1214.2218.313.3619.1315.310.5717.331711.06
商务住宅10.2117.9216.0614.4913.1614.5412.2322.971020.83
政府机构5.2114.28.389.2910.627.976.413.69.3310.11
生活服务74.25117.8111.5368.9356.2285.57119.2141.0367.22150.89
科教文化17.1532.2420.4324.9818.1617.4623.8623.919.6138.78
购物服务72.36139.94103.673.4271.3870.59144.8132.13119.5114.89
金融保险4.219.514.725.166.875.197.468.336.514.44
风景名胜0.341.510.450.6710.542.172.930.280.94
餐饮服务56.9682.9489.7953.2746.6762.2492.8695.6353.8390.61

Fig.6

Curves of traveling patterns across blocks during the rest day"

Table 5

The POI enrichment index in different Functional areas"

POI类别O1-D4O4-D2O0-D1O1-D2O3-D3O0-D4O4-D0O2-D1O3-D2O2-D2
住宿服务1.041.311.1511.250.970.772.450.491.52
体育休闲0.821.131.040.870.591.061.241.340.711.38
公司企业0.620.90.620.821.450.690.830.50.931.99
医疗保健1.350.761.181.211.741.320.60.851.360.49
商务住宅0.970.961.031.311.191.250.71.120.80.92
政府机构0.731.120.791.241.421.010.540.981.10.66
生活服务1.161.041.181.020.841.211.121.140.891.1
科教文化11.060.811.391.010.920.840.720.961.06
购物服务0.890.970.860.850.840.781.060.831.230.66
金融保险1.071.360.811.241.671.191.131.091.391.71
风景名胜0.30.740.260.550.830.431.131.320.20.38
餐饮服务1.160.951.231.030.911.141.1310.920.86

Fig.7

Results of the identification of the functional attributes of the various types of blocks"

1 杨喜平, 方志祥, 尹凌. 城市空间结构要素与人群聚散稳定性的关联性探索[J]. 地球信息科学学报, 2018, 20(6): 791-798.
Yang Xi-ping, Fang Zhi-xiang, Yin Ling. Exploring the relationship between urban spatial structure and the stability of human convergence-divergence[J]. Journal of Geo-information Science, 2018, 20(6): 791-798.
2 Xiao J Y, Shen Y J, Ge J F, et al. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing[J]. Landscape and Urban Planning, 2006, 75(1): 69-80.
3 贾斐雪, 闫金凤, 王甜. 大数据构建的赋分评价模型与功能区识别研究[J]. 测绘科学, 2021, 46(8): 172-178.
Jia Fei-xue, Yan Jin-feng, Wang Tian. Research on scoring evaluation model and functional regions identification constructed by big data[J]. Science of Surveying and Mapping, 2021, 46(8):172-178.
4 禹文豪, 艾廷华, 杨敏, 等. 利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J]. 武汉大学学报: 信息科学版, 2016, 41(2): 221-227.
Yu Wen-hao, Ai Ting-hua, Yang Min, et al. Detecting "hot spots" of facility pois based on kernel density estimation and spatial autocorrelation technique[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 221-227.
5 高旭, 桂志鹏, 隆玺, 等. KDSG-DBSCAN:一种基于K-D Tree和Spark GraphX的高性能DBSCAN算法[J]. 地理与地理信息科学, 2017, 33(6): 1-7.
Gao Xu, Gui Zhi-peng, Long Xi, et al. KDSG-DBSCAN: a high performance DBSCAN algorithm based on K-D Tree and Spark GraphX[J]. Geography and Geo-Information Science, 2017, 33(6): 1-7.
6 Zhen Q, Liu X T, Fei T, et al. Identification of urban functional areas by coupling satellite images and taxi GPS trajectories[J]. Remote Sensing, 2020, 12(15): No.12152449.
7 于翔. 基于城市公交刷卡数据和兴趣点的城市功能区识别研究——以北京市为例[D]. 杭州: 浙江大学公共管理学院, 2014.
Yu Xiang. Discovering zones of different functions using bus smart card data and points of interest: a case study of Beijing[D]. Hangzhou: College of Public Administration, Zhejiang University, 2014.
8 杨振山, 苏锦华, 杨航, 等. 基于多源数据的城市功能区精细化研究——以北京为例[J]. 地理研究, 2021, 40(2): 477-494.
Yang Zhen-shan, Su Jin-hua, Yang Hang, et al. Exploring urban functional areas based on multi-source data: a case study of Beijing[J]. Geographical Research, 2021, 40(2): 477-494.
9 孙士杰, 孙群, 陆川伟, 等. 基于出租车上下客数据的城市功能区提取方法[J]. 测绘科学技术学报, 2019, 36(6): 637-642.
Sun Shi-jie, Sun Qun, Lu Chuan-wei, et al. Urban functional areas extraction method based on taxi origin and destination data[J]. Journal of Geomatics Science and Technology, 2019, 36(6): 637-642.
10 刘菊, 许珺, 蔡玲, 等. 基于出租车用户出行的功能区识别[J]. 地球信息科学学报, 2018, 20(11): 1550-1561.
Liu Ju, Xu Jun, Cai Ling, et al. Identifying functional regions based on the spatio-temporal pattern of taxi trajectories[J]. Journal of Geo-information Science, 2018, 20(11): 1550-1561.
11 姚尧, 张亚涛, 关庆锋, 等. 使用时序出租车轨迹识别多层次城市功能结构[J]. 武汉大学学报: 信息科学版, 2019, 44(6): 875-884.
Yao Yao, Zhang Ya-tao, Guan Qing-feng, et al. Sensing multi-level urban functional structures by using time series taxi trajectory data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 875-884.
12 Pan G, Qi G, Wu Z, et al. Land-use classification using taxi GPS traces[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 113-123.
13 李俊奎. 时间序列相似性问题研究[D]. 武汉:华中科技大学计算机科学与技术学院, 2008.
Li Jun-kui. Research on time series sequence similarity[D]. Wuhan:College of Computer Science and Technology of Huazhong University of Science and Technology, 2008.
14 王文璇, 朱晓东, 吴兵. 基于动态时间弯曲距离的快速路入口匝道周围路径分级方法[J]. 吉林大学学报: 工学版, 2020, 50(3): 970-979.
Wang Wen-xuan, Zhu Xiao-dong, Wu Bing. Utilizing dynamic time warping distance in classification of routes around expressway on-ramp[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 970-979.
15 邸少宁, 朱杰, 郑加柱, 等. 出租车轨迹数据的南京人群出行模式挖掘[J]. 测绘科学, 2021, 46(1): 203-212.
Di Shao-ning, Zhu Jie, Zheng Jia-zhu, et al. Movement pattern mining of Nanjing residents based on taxi trajectory data[J]. Science of Surveying and Mapping, 2021, 46(1): 203-212.
16 闫学东, 郭浩楠, 李永昌, 等. 基于顺风车数据和聚类方法的都市圈区域划分与层级结构研究[J].交通运输系统工程与信息, 2021, 21(4): 30-39.
Yan Xue-dong, Guo Hao-nan, Li Yong-chang,et al. Regional division and hierarchical structure of metropolitan area based on carpooling data and clustering method[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 30-39.
17 Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1973, 3(3): 32-57.
18 Verburg P H, Nijs T C D, Eck J R V, et al. A method to analyze neighborhood characteristics of land use pattern[J]. Computers Environment and Urban Systems, 2004, 28(6): 667-690.
19 程静, 刘家骏, 高勇. 基于时间序列聚类方法分析北京出租车出行量的时空特征[J]. 地球信息科学学报, 2016, 18(9): 1227-1239.
Cheng Jing, Liu Jia-jun, Gao Yong. Analyzing the spatio-temporal characteristics of Beijing's OD trip volume based on time series clustering method[J]. Journal of Geo-information Science, 2016, 18(9): 1227-1239.
[1] Tian-yang GAO,Da-wei HU,Rui-sen JIANG,Xue WU,Hui-tian LIU. Optimization study of zonal-based flexible feeder bus routes based on modular vehicle system [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 537-545.
[2] Yu-ran LI,Fei WANG,Cai-hua ZHU,Fei HAN,Yan LI. Chain-effect utility of factors influencing residents' commuting mode choice in polluted weather [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 577-590.
[3] Hui-zhi XU,Shi-sen JIANG,Xiu-qing WANG,Shuang CHEN. Vehicle target detection and ranging in vehicle image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 185-197.
[4] Chang-jiang ZHENG,Tong-tong TAO,Zhi-chao CHEN. Cascading failure model based on adjustable redistribution of traffic flow [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2441-2450.
[5] Xiao-yue WEN,Guo-min QIAN,Hua-hua KONG,Yue-jie MIU,Dian-hai WANG. TrafficPro: a framework to predict link speeds on signalized urban traffic network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2214-2222.
[6] Yun-juan YAN,Wei-xiong ZHA,Jun-gang SHI,Li-ping YAN. Double layer optimization model of charging pile based on random charging demand [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2238-2244.
[7] Da-yi QU,Hao-min LIU,Zi-yi YANG,Shou-chen DAI. Dynamic allocation mechanism and model of traffic flow in bottleneck section based on vehicle infrastructure cooperation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2187-2196.
[8] Gui-zhen CHEN,Hui-ting CHENG,Cai-hua ZHU,Yu-ran LI,Yan LI. A risk evaluation method for urban intersections considering drivers' physiological information [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1277-1284.
[9] Xiao-hua ZHAO,Chang LIU,Hang QI,Ju-shang OU,Ying YAO,Miao GUO,Hai-yi YANG. Influencing factors and heterogeneity analysis of highway traffic accidents [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 987-995.
[10] Xiu-jian YANG,Xiao-han JIA,Sheng-bin ZHANG. Characteristics of mixed traffic flow taking account effect of dynamics of vehicular platoon [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 947-958.
[11] Bo-song FAN,Chun-fu SHAO. Urban rail transit emergency risk level identification method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 427-435.
[12] Chang-jiang ZHENG,Huan HU,Mu-qing DU. Design of multimodal express delivery network structure considering hub failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2304-2311.
[13] Dian-hai WANG,You-wei HU,Zheng-yi CAI,Jia-qi ZENG,Wen-bin YAO. Dynamic road resistance model of intermittent flow on urban roads based on BPR function [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1951-1961.
[14] Yan-bo LI,Bai-song LIU,Bo-bin YAO,Jun-shuo CHEN,Kai-fa QU,Qi-sheng WU,Jie-ning CAO. Location of electrical changing station of expressway considering stochastic characteristics of road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1364-1371.
[15] Ying HU,Chun-fu SHAO,Shu-ling WANG,Xi JIANG,Hai-rui SUN. Identification of road riding quality based on shared bike trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1040-1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!