Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1319-1327.doi: 10.13229/j.cnki.jdxbgxb.20230717

Previous Articles     Next Articles

Congestion pricing model in multi-modal network based on doubly dynamical evolution

Cheng-dong ZHOU(),Fei SONG,Xiao-mei ZHAO(),Jun-jie YAO   

  1. School of Systems Science,Beijing Jiaotong University,Beijing 100044,China
  • Received:2023-07-09 Online:2025-04-01 Published:2025-06-19
  • Contact: Xiao-mei ZHAO E-mail:19114019@bjtu.edu.cn;xmzhao@bjtu.edu.cn

Abstract:

This paper presents a bi-level model to address congestion pricing in a multi-modal transportation system. The upper level is an optimization model aiming to minimize the total social cost and determine the optimal congestion price for road segments. Meanwhile, the lower level is a doubly dynamical model including day-to-day traffic dynamics and within-day traffic dynamics. Solving the bi-level model employs a genetic algorithm. Three congestion pricing schemes are proposed and compared, namely no congestion pricing(NCP), congestion pricing for cars(CPC) and congestion pricing for both cars and car-sharing(CPCS). The results show that compared to the NCP, the CPC and CPCS result in a 17.44% and 14.89% reduction in private car trips, respectively. Additionally, the average travel times for private cars decrease by 7.54% and 30.18% under the CPC and CPCS, respectively. In the CPC scheme, car-sharing could generate maximum revenue and be the mode accounting for the largest share(39.97%) of the multi-modal transportation system.

Key words: engineering of communication and transportation, system urban traffic, congestion pricing, bi-level model, multi-modal transportation system, doubly dynamical evolution, car-sharing

CLC Number: 

  • U491

Fig.1

Flow chart of a doubly dynamical evolution in a multi-modal network"

Table 1

Solution steps of genetic algorithm"

输入:个体形式、优化目标、参数等
输出:优化过程指标图,优化模型的最优解的方案结果
步骤1初始化群体。将收费方案作为染色体,随机生成一个初始种群,规模为M。
步骤2个体评价。对每个收费方案,下层演化模型都能得到对应的目标值,进而将目标值带入上层优化目标函数。本次案例采用上层目标函数作为适应度函数,来衡量一个个体对环境的适应程度。由于本次实验为最小值问题,因此该数值越小则适应度越高,代表该个体有更大的概率生存下来。
步骤3选择运算。计算选择概率,使用精英保留法选择种群中适应度最高的40%作为精英个体遗传到下一代,淘汰适应度最低的个体。
步骤4交叉运算。设定交叉概率,使个体间进行配对,即使个体间交换、重组部分基因。
步骤5变异运算。设定变异概率,随机改变染色体上的基因,通过改变基因生成新的个体。
步骤6终止条件判断。判断迭代次数是否达到案例设置的最大迭代次数,是则停止计算,进行染色体解码,输出结果;否则返回步骤2。

Fig.2

Road network of case study(Nguyen-Dupuis)"

Fig.3

Travel demand"

Table 2

Basic parameters"

参数数值参数数值
ω0.8Psharecomf/(元·次-13
ρ0.2θ0.1
ns20Q/d30
W120ts2bchange/min7
βvel-0.010ccar,fix/(元·次-110
a1/(元·h-19abus15
γbus-0.06Tbusdetour/min6
c1/(元·km-10.5Ps2bcomf/(元·次-15
Bbusq/辆30Pb2scomf/(元·次-15
α/(元·h-150Tbuswait/min7
tc2bchange/min5αvel30
tb2schange/min7δ0.5
a0/(元·h-16γvel-0.3
Tsharedetour/min10a,b,c1.0,0.3,0.3
Pc2bcomf/(元·次-12βbus-0.003
Pcarpark/(元·次-12c2/(元·min-10.3

Fig.4

Iteration of CPCS's objective"

Table 3

Congestion pricing of CPC and CPCS"

时段CPC方案CPCS方案
平峰高峰平峰高峰
15.229.80.341.92
25.019.384.157.02
34.128.990.000.36
40.000.810.000.00
52.316.013.416.77
60.000.611.123.81
74.557.763.286.53
85.938.720.000.00
91.123.113.266.86
107.289.420.000.37
112.896.011.994.56
125.278.680.892.29
133.015.726.248.49
143.516.901.783.48
152.014.767.569.37
161.384.900.000.10
171.444.893.275.63
186.889.820.422.74
192.125.250.131.00

Table 4

Mode split results of three congestion pricing schemes"

出行模式NCP比例CPC比例CPCS比例
car34.6417.219.75
share31.8339.9717.71
bus13.4927.2551.10
c2b7.393.464.24
s2b5.935.323.17
b2s6.726.803.76

Table 5

System indicators under the three congestion pricing schemes"

评价指标NCP(参考)CPCCPCS
STTC/万元211.97

213.11

(+0.53%)

217.23

(+2.48%)

BSR/万元5.70

6.48

(+13.68%)

8.76

(+53.68%)

SVSR/万元26.55

31.24

(+17.66%)

18.15

(-31.63%)

CCR/万元03.4212.92
TTTC/h15 233.68

11756.31

(-22.82%)

6802.31

(-55.34%)

ATTC/h0.53

0.49

(-7.54%)

0.37

(-30.18%)

[1] Li X, Shaw J W, Liu D, et al. Acceptability of Beijing congestion charging from a business perspective[J]. Transportation, 2019, 46(3): 753-776.
[2] 常玉林, 徐文倩, 孙超, 等. 车联网环境下考虑遵从程度的混合流量逐日均衡[J]. 吉林大学学报:工学版, 2023, 53(4): 1085-1093.
Chang Yu-lin, Xu Wen-qian, Sun Chao, et al. Day⁃to⁃day equilibrium of hybrid traffic considering obedience degree under Internet of vehicles environment[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1085-1093.
[3] 祝俪菱, 杨达, 吴丹红, 等. 考虑有限理性和认知更新的日变交通分配模型[J]. 北京交通大学学报, 2018, 42(1): 75-80.
Zhu Li-ling, Yang Da, Wu Dan-hong, et al. Day-to-day traffic assignment model considering travelers' bounded rationality and perception updating[J]. Journal of Beijing Jiaotong University, 2018, 42(1): 75-80.
[4] Liu W, Geroliminis N. Doubly dynamics for multi-modal networks with park-and-ride and adaptive pricing[J]. Transportation Research Part B: Methodological, 2017, 102: 162-179.
[5] Wei B, Sun D. A two-layer network dynamic congestion pricing based on macroscopic fundamental diagram[J]. Journal of Advanced Transportation, 2018.
[6] Wei B, Saberis M, Zhang F, et al. Modeling and managing ridesharing in a multi-modal network with an aggregate traffic representation: a doubly dynamical approach[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: No.102670.
[7] Friesz T L, Bernstein D, Kydes N. Dynamic congestion pricing in disequilibrium[J]. Networks and Spatial Economics, 2004, 4: 181-202.
[8] Tan Z, Yang H, Guo R Y. Dynamic congestion pricing with day-to-day flow evolution and user heterogeneity[J]. Transportation Research Part C: Emerging Technologies, 2015, 61: 87-105.
[9] 刘鹏煌. 基于势博弈的拥堵收费双层定价模型[J]. 物流科技, 2020, 43(5): 109-115, 118.
Liu Peng-huang. A two-tier pricing model for congestion pricing based on potential game[J]. Logistics Technology, 2020, 43(5): 109-115, 118.
[10] Cascetta E, Nuzzolo A, Russo F, et al. A modified Logit route choice model overcoming path overlapping problems: Specification and some calibration results for interurban networks[C]∥Transportation and Traffic Theory Proceedings of the 13th International Symposium on Transportation and Traffic Theory, Lyon, France, 1996(7):24-26.
[11] Zhou Z, Chen A, Bekhor S. C-logit stochastic user equilibrium model: formulations and solution algorithm[J]. Transportmetrica, 2012, 8(1): 17-41.
[12] Zhang S, Sun H J, Lyu Y, et al. Day-to-day dynamics of traveler learning behavior and the incentivization scheme of the operator for one-way carsharing services[J]. Computers & Industrial Engineering, 2021, 155: No.107170.
[13] Zhou B, Xu M, Meng Q, et al. A day-to-day route flow evolution process towards the mixed equilibria[J]. Transportation Research Part C: Emerging Technologies, 2017, 82: 210-228.
[1] Yan-yan QIN,Teng-fei XIAO,Qin-zhong LUO,Bao-jie WANG. Car-following safety analysis and control strategy for foggy freeway [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1241-1249.
[2] Xian-min SONG,Tian-shu ZHAN,Hai-tao LI,Bo LIU,Yun-xiang ZHANG. Reservation and allocation model considering user cost and utilization of parking space [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1287-1297.
[3] Yi-yong PAN,Xiang-yu XU. Model for predicting severity of accidents based on MobileViT network considering imbalanced data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 947-953.
[4] Yong-heng CHEN,Jia-wei YANG,Jing-yu SUN. Optimal trajectory control for connected left-turn vehicles at exit lane for left-turn intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 614-622.
[5] Xi-zhen ZHOU,He GONG,Dun-dun LI,Yan-jie JI,Jie YAN. Nonlinear model for impact of built environment on curb parking spaces occupancy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2520-2530.
[6] Ya-qin QIN,Zheng-fu QIAN,Ji-ming XIE. Vehicle cooperative obstacle avoidance strategy driven by CLAM model and trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1311-1322.
[7] Yu-lin CHANG,Yi-jie WANG,Jian WANG,Chao SUN,Peng ZHANG,Wen-qian XU. Day-to-day equilibrium model of mixed traffic flow considering customized bus and exclusive bus lane [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3209-3219.
[8] Ming-chen GU,Hui-yuan XIONG,Zeng-jun LIU,Qing-yu LUO,Hong LIU. Weight estimation model for trucks integrating multi-head attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2771-2780.
[9] Wen-cai SUN,Xu-ge HU,Zhi-fa YANG,Fan-yu MENG,Wei SUN. Optimization of infrared-visible road target detection by fusing GPNet and image multiscale features [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2799-2806.
[10] Hong-tao LI,Lin-hong WANG,Jun-da LI. Influence of lighting and speed limit on visual search ability at highway intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2287-2297.
[11] Wei-tiao WU,Kun ZENG,Wei ZHOU,Peng LI,Wen-zhou JIN. Deep learning method for bus passenger flow prediction based on multi-source data and surrogate-based optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2001-2015.
[12] Zhen-liang LIU,Cun-bao ZHAO,Yun-peng WU,Mi-na MA,Long-shuang MA. Life⁃cycle seismic resilience assessment of highway bridge networks using data⁃driven method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1695-1701.
[13] Hong-fei JIA,Ying-jun XU,Li-li YANG,Nan WANG. League member selection and benefit distribution of commercial vehicles multi⁃modal transportation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1060-1069.
[14] Yu-lin CHANG,Wen-qian XU,Chao SUN,Peng ZHANG. Day⁃to⁃day equilibrium of hybrid traffic considering obedience degree under internet of vehicles environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1085-1093.
[15] Chao SUN,Hao-wei YIN,Wen-yun TANG,Zhao-ming CHU. Sensor deployment strategy and expansion inference of mobile phone data for traffic demand estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1070-1077.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .