Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (9): 2520-2530.doi: 10.13229/j.cnki.jdxbgxb.20221460

Previous Articles    

Nonlinear model for impact of built environment on curb parking spaces occupancy

Xi-zhen ZHOU1,2(),He GONG3,Dun-dun LI4,Yan-jie JI1,2(),Jie YAN1,2   

  1. 1.School of Transportation,Southeast University,Nanjing 211189,China
    2.Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies,Southeast University,Nanjing 210096,China
    3.Public Security Bureau of Changshu,Traffic Police Brigade,Changshu 215505,China
    4.Genland Ipark Technology Co. ,Ltd. ,Changshu 215500,China
  • Received:2023-02-28 Online:2024-09-01 Published:2024-10-28
  • Contact: Yan-jie JI E-mail:zhouxizhen@seu.edu.cn;jiyanjie@seu.edu.cn

Abstract:

To finely grasp the curb parking demand pattern at a micro-spatial scale, quantile regression models for two typical scenarios, namely workdays and weekends were proposed, to explore the nonlinear effects of land utilization, curb parking spaces, traffic factors, and socioeconomic and population on curb parking space occupancy. The results show that quantile regression is superior to linear regression in capturing the complex relationship between variables. And the coefficients and significance levels of explanatory variables change as the quantile changes. At the same time, there is an obvious heterogeneity between workdays and weekends. For example, the number of bus stations around the parking sites is closely related to the low and high occupancies, but this variable has no statistical significance under the medium occupancy. The catering services POIs do not significantly influence curb parking space occupancy on workdays.

Key words: engineering of communication and transportation system, curb parking, occupancy, quantile regression, non-linear impact

CLC Number: 

  • U491.1

Fig.1

Research area"

Table 1

Descriptive statistics for the independent and dependent variables"

变量解 释平均值标准差
因变量
工作日泊位使用率工作日的路内停车泊位小时使用率/%33.9524.72
非工作日泊位使用率非工作日的路内停车泊位小时使用率/%33.5325.56
土地利用
餐饮类缓冲区内餐饮类(中餐厅、外国餐厅、咖啡厅等)兴趣点的密度/(个·km-231.5826.2
住宅类缓冲区内住宅类(小区、宾馆、别墅等)兴趣点的密度/(个·km-29.445.51
工作类缓冲区内工作类(公司企业、商务大厦等)兴趣点的密度/(个·km-221.6815.92
休闲类缓冲区内休闲类(运动场馆、娱乐场所等)兴趣点的密度/(个·km-216.3317.67
医疗服务类缓冲区内医疗服务类(综合医院、专科医院等)兴趣点的密度/(个·km-28.716.42
科教类缓冲区内科教类(中学、小学、大学等)兴趣点的密度/(个·km-27.585.29
景区类缓冲区内景区类(公园广场、风景名胜等)兴趣点的密度/(个·km-24.817.04
购物类缓冲区内购物类(商场、家电卖场等)兴趣点的密度/(个·km-284.3771.4
行政机构类缓冲区内行政机构类(政府机关、公检法机构等)兴趣点的密度/(个·km-218.1013.11
土地利用混合度缓冲区内用地类型的熵指数0.580.08
交通因素
公交站密度缓冲区内公交站的密度/(个·km-240.18105.45
交叉口密度缓冲区内交叉口的密度/(个·km-257.3340.8
路网密度缓冲区内道路长度的密度/(km·km-224.517.69
停车站点因素
首个收费率停车站点第一个收费时段的费率/(元·小时)5.811.81
免费停车时长停车站点的免费停车时长/分34.7114.34
最高收费上限停车站点处的24小时的收费上限/元38.5417.43
站点泊位数停车站点所提供的泊位数/个44.2724.75
时段订单发生时间所处时段11.686.83
社会人口和经济
平均房价缓冲区内的平均房价/(千元·km-218.546.20
人口密度缓冲区内的人口密度(百人·km-2167.64134.91

Table 2

Explanatory variable coefficient of the quantile regression model under the workdays"

解释变量OLS10th30th50th70th80th90th
修正的多元相关系数0.4970.3710.3870.4010.4450.4830.531
餐饮类-0.0160.035*-0.035-0.0220.0370.0190.018
住宅类1.232***-0.695***-0.476***1.804***1.769***1.807***1.505***
工作类0.255**0.333***0.238***0.084**0.063*0.019-0.012
休闲类0.082*-0.265***-0.214***0.280***0.209***0.169**0.205**
医疗服务类0.338***0.179***0.244***0.246***0.272**0.392***0.243**
科教类-0.232***0.368***0.013-0.597***-0.319**-0.10220.061
景区类-0.479***-0.697***-1.125***-0.289**-0.171-0.276**-0.774***
购物类0.0090.043***0.168***-0.008-0.035**-0.054**-0.019
行政机构类0.190**-0.0855-0.077**0.459***0.532***0.532***0.610***
土地利用混合度39.418**1.091100.886**15.6235.428-0.91023.495*
公交站密度0.013*-0.047***-0.034***0.032***0.059***0.106***0.114***
交叉口密度0.172**0.077***0.129***0.203***0.152***0.160***0.249***
路网密度-1.392**0.109-0.722***-1.826***-1.690***-1.546***-1.432***
首个收费率-1.980***1.935***3.159***-5.376***-8.327***-8.096***-7.372***
免费停车时长0.135**-0.247***-0.582***0.152***0.409***0.322***0.294***
最高收费上限0.122***-0.093***-0.117***0.322***0.551***0.495***0.367***
时段0.426***0.168***0.372***0.520***0.552***0.498***0.369***
站点泊位数-0.204**0.073***0.096***-0.135***-0.312***-0.370***-0.396***
平均房价0.389**0.097***0.147***0.285***0.643***0.714***0.707***
人口密度-0.045**0.017***0.010***-0.058***-0.084***-0.089***-0.092***
常数项20.053**-6.531**-40.453***45.766**66.985**80.751**74.644**

Table 3

Explanatory variable coefficient of the quantile regression model under the weekends"

解释变量OLS10th30th50th70th80th90th
修正的多元相关系数0.4780.3760.4080.4060.4490.4860.522
餐饮类0.161***0.073***0.073**0.079*0.315***0.305**0.407*
住宅类0.952***-1.011***-0.932***0.799***2.274***1.915***1.484***
工作类0.156***0.207***0.121***0.051-0.010-0.001-0.074*
休闲类0.061-0.320***-0.324***0.114**0.212**0.112-0.087
医疗服务类-0.249**0.212***0.03-0.251**-0.118-0.181-0.400**
科教类-0.267**0.373***-0.113-0.791***-0.667***-0.0860.229
景区类-0.256**-0.617***-1.378***-0.690***0.0150.2460.280*
购物类0.0010.048***0.212***0.098***-0.091**-0.095**-0.087**
行政机构类0.191**0.031-0.127***0.309***0.613***0.550***0.505***
土地利用混合度2.0137.830114.927**33.697**-76.897**-83.045**-70.696**
公交站密度0.009-0.026***-0.032***-0.0070.046***0.079***0.105***
交叉口密度0.127**0.118***0.118***0.135***0.153***0.086**0.115**
路网密度-1.191***-0.254***-0.500***-1.183***-1.917***-1.539***-1.255***
首个收费率-1.521**1.883***5.755***0.926*-6.209***-6.250***-5.432***
免费停车时长-1.521-0.335***-0.882***-0.520***0.258***0.292**0.287**
最高收费上限0.261**-0.094***-0.136***0.260***0.599***0.572***0.106*
时段0.401**0.091**0.329***0.494***0.568***0.484***0.368***
站点泊位数-0.245**0.065***0.068***-0.107*-0.373**-0.438**-0.523**
平均房价0.593*0.084**0.298***0.395***1.199**1.132**0.965**
人口密度-0.050**0.022***0.008**-0.060**-0.090**-0.091**-0.092**
常数项39.848**-0.469-52.725**21.470**101.511***113.765***123.322***

Fig.2

Estimated value of traffic factors in quantile regression model"

Fig.3

Estimated value of parking street factors in quantile regression model"

Fig.4

Estimated value of land use factors in quantile regression model"

1 Mannini L, Cipriani E, Crisalli U, et al. On-street parking search time estimation using FCD data[J]. Transportation Research Procedia, 2017, 27: 929-936.
2 Arnott R, Williams P. Cruising for parking around a circle[J]. Transportation Research Part B: Methodological,2017, 104: 357-375.
3 Liu W, Zhang F, Yang H. Modeling and managing the joint equilibrium of destination and parking choices under hybrid supply of curbside and shared parking[J]. Transportation Research Part C: Emerging Technologies,2021, 130: No.103301.
4 Lam W H, Holyoak N M, Lo H P. How park-and-ride schemes can be successful in Eastern Asia[J]. Journal of Urban Planning and Development,2001, 127(2): 63-78.
5 Liu W, Geroliminis N. Doubly dynamics for multi-modal networks with park-and-ride and adaptive pricing[J]. Transportation Research Part B: Methodological,2017, 102: 162-179.
6 Zheng N, Geroliminis N. Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing[J]. Transportation Research Part B: Methodological,2016, 83: 36-58.
7 Wang J, Wang H, Zhang X. A hybrid management scheme with parking pricing and parking permit for a many-to-one park and ride network[J]. Transportation Research Part C: Emerging Technologies,2020, 112: 153-179.
8 Chen Z, Spana S, Yin Y, et al. An advanced parking navigation system for downtown parking[J]. Networks and Spatial Economics, 2019, 19(3): 953-968.
9 张文会,孙舒蕊,于秋影,等. 考虑供需平衡的路内停车布局研究[J]. 森林工程, 2020, 36: 91-96, 102.
Zhang Wen-hui, Sun Shu-rui, Yu Qiu-ying, et al. Study on the layout of in-road parking considering the balance between supply and demand[J] Forest Engineering,2020, 36: 91-96, 102.
10 张戎,诸立超,林佳妮. 城市中心区路内停车累进计费定价模型[J]. 同济大学学报:自然科学版, 2015, 43(1):90-95, 120.
Zhang Rong, Zhu Li-chao, Lin Jia-ni. Curb parking progressive charging pricing model of city center[J] Journal of Tongji University(Natural Science), 2015, 43(1):90-95, 120.
11 刘健斌. 路内停车选择和泊车行为分析与建模[D]. 长春: 吉林大学交通学院, 2022.
Liu Jian-bin. Analysis and modeling of on-street parking choice and parking behavior[D]. Changchun: School of Transportation of Jilin University, 2022.
12 彭程. 深圳南山区路内停车设施利用特征与影响因素研究[D]. 哈尔滨: 哈尔滨工业大学建筑学院, 2021.
Peng Cheng. Research on the utilization characteristics and influence factors of on-street parking in Nanshan district of Shenzhen[D]. Harbin: School of Architecture of Harbin University of Industry, 2021.
13 尹超英, 邵春福, 王晓全, 等. 考虑停车可用性的建成环境对小汽车通勤出行的影响[J]. 吉林大学学报:工学版,2019, 49(3): 714-719.
Yin Chao-ying, Shao Chun-fu, Wang Xiao-quan. Influence of urban built environment on car commuting considering parking availability[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 714-719.
14 Guo Z, Mcdonnell S. Curb parking pricing for local residents: an exploration in New York City based on willingness to pay[J]. Transport Policy, 2013, 30: 186-198.
15 Bianco M J. Effective transportation demand management: combining parking pricing, transit incentives, and transportation management in a commercial district of Portland, Oregon[J]. Transportation Research Record, 2000, 1711(1): 46-54.
16 Brooke S, Ison S, Quddus M. On-street parking search: review and future research direction[J]. Transportation Research Record, 2014, 2469(1): 65-75.
17 Ibeas A, Dell'Olio L, Bordagaray M, et al. Modelling parking choices considering user heterogeneity[J]. Transportation Research Part A: Policy and Practice, 2014, 70: 41-49.
18 Ottomanelli M, Dell'Orco M, Sassanelli D. Modelling parking choice behaviour using possibility theory[J]. Transportation Planning and Technology,2011, 34(7): 647-667.
19 Axhausen K W, Polak J W. Choice of parking: stated preference approach[J]. Transportation,1991, 18(1): 59-81.
20 Piccioni C, Valtorta M, Musso A. Investigating effectiveness of on-street parking pricing schemes in urban areas: an empirical study in Rome[J]. Transport Policy,2019, 80: 136-147.
21 Hunt J D, Teply S. A nested logit model of parking location choice[J]. Transportation Research Part B: Methodologica,1993, 27(4): 253-265.
22 Bi H, Ye Z, Zhu H. Examining the nonlinear impacts of built environment on ridesourcing usage: focus on the critical urban sub-regions[J]. Journal of Cleaner Production, 2022, 350: No.131314.
23 Zhao G W, Li Z T, Shang Y Z, et al. How does the urban built environment affect online car-hailing ridership intensity among different scales?[J]. International Journal of Environmental Research and Public Health,2022, 19(9): No.5325.
24 Chen C, Feng T, Ding C, et al. Examining the spatial-temporal relationship between urban built environment and taxi ridership: results of a semi-parametric GWPR model[J]. Journal of Transport Geography, 2021, 96:No. 103172.
25 Wang L, Zhao C, Liu X, et al. Non-linear effects of the built environment and social environment on bus use among older adults in china: an application of the xgboost model[J]. International Journal of Environmental Research and Public Health, 2021, 18(18):9592.
26 刘柯良,陈坚,祝烨,等. 社区建成环境对小汽车使用行为的非线性影响模型[J]. 北京交通大学学报, 2022, 46(3): 49-56.
Liu Ke-liang, Chen Jian, Zhu Ye, et al. Non-linear impact model of community built environment on car usage behavior[J] Journal of Beijing Jiaotong University,2022, 46(3): 49-56.
27 刘柯良,彭涛,陈坚,等. 建成环境对居住区配建停车场利用率影响模型研究[J]. 公路与汽运, 2021, 205(4): 31-35.
Liu Ke-liang, Peng Tao, Chen Jian, et al. Research on the model of the built environment's influence on the utilization of parking lot in residential area[J]. Highways & Automotive Applications, 2021, 205(4): 31-35.
28 陈坚,刘柯良,邸晶,等. 建成环境对城市停车需求影响的非线性模型[J]. 交通运输系统工程与信息, 2021, 21(4): 197-203.
Chen Jian, Liu Ke-liang, Di Jing, et al. Nonlinear model of impact of built environment on urban parking demand[J]. Journal of Transportation Systems Engineering,2021, 21(4): 197-203.
29 Cervero R. Built environments and mode choice: toward a normative framework[J]. Transportation Research Part D: Transport and Environment, 2002, 7(4): 265-284.
30 傅志妍,彭涛,陈坚,等. 建成环境视角下出行者停车选择意愿模型[J]. 昆明理工大学学报:自然科学版, 2022,48(1): 142-150.
Fu Zhi-yan, Peng Tao, Chen Jian, et al. The model of travelers'parking choice intention from the perspective of built environment[J]. Journal of Kunming University of Science and Technology(Natural Science),2022,48(1): 142-150.
31 Gan Z, Yang M, Feng T, et al. Examining the relationship between built environment and metro ridership at station-to-station level[J]. Transportation Research Part D: Transport and Environment, 2020, 82: No.102332.
32 Ma W, Vatsa P, Owusu-Sekyere E, et al. Does income diversity really stimulate household consumption expenditure diversity? Evidence from mean-based and unconditional quantile regressions[J]. Applied Economics, 2022: No.2159012.
33 Evkaya O, Yilmaz B, Haliloğlu E Y,et al. Sectoral electricity consumption modeling with D-vine quantile regression: the US electricity market case[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2023, 18(1): No.2160523.
34 Cheng L, Wang K, De Vos J, et al. Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: a quantile regression approach[J]. Transportation Research Part A: Policy and Practice, 2022, 162: 175-187.
[1] Ya-qin QIN,Zheng-fu QIAN,Ji-ming XIE. Vehicle cooperative obstacle avoidance strategy driven by CLAM model and trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1311-1322.
[2] Hong-tao LI,Lin-hong WANG,Jun-da LI. Influence of lighting and speed limit on visual search ability at highway intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2287-2297.
[3] Wei-tiao WU,Kun ZENG,Wei ZHOU,Peng LI,Wen-zhou JIN. Deep learning method for bus passenger flow prediction based on multi-source data and surrogate-based optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2001-2015.
[4] Zhen-liang LIU,Cun-bao ZHAO,Yun-peng WU,Mi-na MA,Long-shuang MA. Life⁃cycle seismic resilience assessment of highway bridge networks using data⁃driven method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1695-1701.
[5] Hong-fei JIA,Ying-jun XU,Li-li YANG,Nan WANG. League member selection and benefit distribution of commercial vehicles multi⁃modal transportation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1060-1069.
[6] Chao SUN,Hao-wei YIN,Wen-yun TANG,Zhao-ming CHU. Sensor deployment strategy and expansion inference of mobile phone data for traffic demand estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1070-1077.
[7] Zhi-wei LIU,Zheng-yun SONG,Jian-rong LIU. Impact of shared autonomous vehicles on choice of subway station connection methods [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3424-3431.
[8] Jin XU,Yan-peng WANG,Hai-yuan CHEN,Xiao-bo ZHANG,Cun-shu PAN. Longitudinal driving characteristics and operating speed prediction model of cars on hairpin curves of mountainous roads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3432-3445.
[9] Wen-jing WU,Kang-bei XIONG,Li-li YANG,Si-xu PU. Optimization of bus transfer preferential strategy in passenger corridor based on mental account theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3113-3121.
[10] Xiu-feng CHEN,Yu-tong GUO,Yue-chen WU,Da-yi QU,Meng-yuan GAO. Multi-objective optimization of traffic signal timings based on dandelion algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3122-3129.
[11] Lang SONG,Jian WANG,Bin-yu YANG,Yong ZHU. Signal timing optimization model for left-turn intersection using double-exit lanes [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2826-2838.
[12] Hui-qiu LU,Feng ZHAO,Bo XIE,Yan-tao TIAN. Driver's lane change intention recognition in snow and ice environment based on neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 273-284.
[13] Wen-bo HUANG,Yan-yan CHEN,Shu-shan CHAI. Decision⁃making behavior of pedestrians in cold competition area under the intervention of mobile information [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 132-140.
[14] Xian-min SONG,Shu-tian YANG,Ming-xin LIU,Zhi-hui LI. Fluctuation characteristics and prediction method of bus travel time between stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1792-1799.
[15] Zhi ZHENG,Bo GENG,Fu-min WANG,Jun-hong DONG,Si-si WEI. Improvement of protective ability for existing low⁃grade concrete guardrail [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1362-1374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!