Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1692-1704.doi: 10.13229/j.cnki.jdxbgxb.20230818

Previous Articles     Next Articles

Multi-view video speed extraction method that can be segmented across lane demarcation lines

Yue HOU1(),Jin-song GUO1,Wei LIN2,Di ZHANG1,Yue WU1,Xin ZHANG1   

  1. 1.School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.Traffic Police Division of Gansu Provincial Public Security Bureau,Lanzhou 730000,China
  • Received:2023-08-03 Online:2025-05-01 Published:2025-07-18

Abstract:

Aiming at the problem that the existing video traffic parameter extraction method relies too much on manual labeling and the single perspective cannot effectively correct the dynamic driving deviation of on-site vehicles, a multi-view video traffic parameter extraction method that can split the lane demarcation line is proposed. This method consists of an automatic generation module for labeling points and a module for multi-view correction. The automatic generation of label points module realizes the process of automatically generating label points by constructing a reference block based on the dividing line of equal-length lanes. The multi-view deviation correction module proposes a variety of mapping methods for the boundary between vehicles and lanes and a correction speed measurement method based on the average speed probability density function to correct two types of deviations generated by vehicles when driving dynamically. The experimental results on the public dataset and the measured dataset show that the speed extraction accuracy of the proposed method is better than that of other speed measurement methods, and has certain universality.

Key words: computer application, intelligent transportation, lane demarcation line, multiple perspectives, vehicle speed detection, computer vision

CLC Number: 

  • TP391

Fig.1

MV-CLB framework diagram"

Fig.2

Module for automatic generation of marking points"

Fig.3

Crossable lane divider scenario map"

Fig.4

Schematic diagram of lane demarcation line division"

Fig.5

Virtual segmentation schematic"

Fig.6

Multi-view error correction speed measurement module"

Fig.7

Scene map of the road under different monitoring viewpoints"

Fig.8

Vehicle driving demonstration diagram"

Fig.9

Vehicle travelling process diagram"

Fig.10

Public dataset labelling map"

Fig.11

Labelled diagram of the measured data set"

Table 1

Experimental environment configuration"

实验环境配置
操作系统Windows 11
处理器AMD Ryzen 7 5800H with Radeon Graphics
内存16.0 GB
编程语言Python

Fig.12

Schematic diagram of the experimental scene"

Table 2

Comparison of error rate results"

分割

次数

第一次抽样第二次抽样第三次抽样
平均误差率最大误差率平均误差率最大误差率平均误差率最大误差率
r=01.642.751.752.871.342.23
r=11.532.561.452.421.271.94
r=21.352.381.332.460.971.94
r=31.182.341.062.280.911.71

Fig.13

Comparison of error rates for different segmentation time"

Table 3

Comparison of detection results by different mapping methods"

映射

方式

正视角侧视角模糊视角
平均误差率最大误差率平均误差率最大误差率平均误差率最大误差率
LL-TR1.062.281.712.841.232.47
LL-PA2.173.371.182.342.143.30
LL-MX1.752.471.482.340.911.71
LL-N2.713.532.733.283.454.53

Fig.14

Error rate comparison chart for different mapping methods"

Table 4

Probability density function comparison"

组别正视角侧视角模糊视角
平均误差率最大误差率平均误差率最大误差率平均误差率最大误差率
对照组2.433.962.193.371.822.52
实验组1.182.341.062.280.911.71

Fig.15

Experimental comparison diagram of probability density function"

Fig.16

Vehicle speed probability density function plot"

Fig.17

Error rate comparison chart"

Table 5

Error rate comparison table"

方法平均误差率
BrnoCompSpeedLzVedioSpeed
GPS2.18
RADAR1.33
T-LL1.711.78
M-LL1.401.42
Vcm3.063.02
video-speed1.844.21
Vcm+centroid5.432.89
本文1.121.16
[1] 姚俊峰, 何瑞, 史童童, 等. 基于机器学习的交通流测方法综述[J]. 交通运输工程学报, 2023, 23(3):44-67.
Yao Jun-feng, He Rui, Shi Tong-tong, et al. Revi-ew on machine learning-based traffic flow prediction methods[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 44-67.
[2] Luvizon D C, Nassu B T, Minetto R. A video-based system for vehicle speed measurement inurban roadways[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(6): 1393-1404.
[3] 姜桂艳, 郭海锋, 吴超腾. 基于感应线圈数据的城市道路交通状态判别方法[J]. 吉林大学学报: 工学版, 2008(): 37-42.
Jiang Gui-yan, Guo Hai-feng, Wu Chao-teng. Urban road traffic status discrimination method based on induction coil data[J]. Journal of Jilin University (Engineering and Technology Edition), 2008,38(Sup. l): 37-42.
[4] 刘丽, 李勇. 一种基于自聚焦的交通雷达测速算 法[J].南京航空航天大学学报, 2013, 45(6): 843-848.
Liu Li, Li Yong. A traffic radar speed measurement algorithm based on self-focusing[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(6): 843-848.
[5] 吴杭彬, 刘豆, 刘启远, 等.基于断面激光扫描的移动车辆交通流参数提取[J]. 同济大学学报: 自然科学版, 2017, 45(7): 1069-1074.
Wu Hang-bin, Liu Dou, Liu Qi-yuan, et al. Parameter extraction of traffic flow of moble vehicles based on cross-sectional laser scanning[J]. Journal of Tongji University (Natural Science Edition), 2017, 45(7): 1069-1074.
[6] 王成钢, 刘海, 谭中慧. 一种基于视频图像的车辆测速算法[J].上海船舶运输科学研究所学报, 2019, 42(1): 65-69.
Wang Cheng-gang, Liu Hai, Tan Zhong-hui. A vehicle speed measurement algorithm based on video image[J]. Journal of Shanghai Institute of Shipping Transportation Science, 2019, 42(1): 65-69.
[7] Rahim H A, Ahmad R B, Zain A S M, et al. An adapted point based tracking for vehicle speed estimation in linear spacing[C]∥International Conference on Computer and Communication Engineering, Zurich, Switzerland, 2010: 1-4.
[8] Peruničić A, Djukanović S, Cvijetić A. Vision-based vehicle speed estimation using the YOLO detector and RNN[C]∥27th International Conference on Information Technology, Wuhan, China, 2023: 1-4.
[9] 田会娟, 刘嘉伟, 翟佳豪,等. 基于多入侵线的视频车速检测方法[J]. 交通运输系统工程与信息, 2022, 22(1): 49-56.
Tian Hui-juan, Liu Jia-wei, Zhai Jia-hao, et al. Video-based vehicle speed measurement method using multiple intrusion lines[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 49-56.
[10] 余越, 柏兴, 狄岚. 基于YOLO网络和小波降噪的视频车辆跟踪测速优化[J]. 应用科技,2023, 50(1):14-20.
Yu Yue, Bai Xing, Di Lan. Video vehicle tracking and speed measurement optimization based on YOLO network and wavelet noise reduction[J]. Applied Science and Technology, 2023, 50(1): 14-20.
[11] 中华人民共和国国家质量检验检疫总局,中国国家标准化委员会. 道路交通标志和标线 第3部分: 道路交通标线: [S].
[12] 于艳玲, 王韬, 袁彬, 等. 基于视频的车速检测算法研究[J]. 现代电子技术, 2013, 36(3): 158-161.
Yu Yan-ling, Wang Tao, Yuan Bin, et al. Research on vehicle speed detection algorithm based on video[J]. Modern Electronics Technique, 2013, 36(3): 158-161.
[13] Sochor J, Juránek R, Špaňhel J, et al. Comprehensive data set for automatic single camera visual speed measurement[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1633-1643.
[14] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779-788.
[15] Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking[C]∥2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 3464-3468.
[16] Javadi S, Dahl M, Pettersson M I, et al. Design of a video-based vehicle speed measurement system: an uncertainty approach[C]∥2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition, Kitakyushu, Japan, 2018: 44-49.
[1] Hong-wei ZHAO,Ming-zhu ZHOU,Ping-ping LIU,Qiu-zhan ZHOU. Medical image segmentation based on confident learning and collaborative training [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1675-1681.
[2] Zi-hao SHEN,Yong-sheng GAO,Hui WANG,Pei-qian LIU,Kun LIU. Deep deterministic policy gradient caching method for privacy protection in Internet of Vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1638-1647.
[3] You-wei WANG,Ao LIU,Li-zhou FENG. New method for text sentiment classification based on knowledge distillation and comment time [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1664-1674.
[4] Jun WANG,Chang-fu SI,Kai-peng WANG,Qiang FU. Intrusion detection method based on ensemble learning and feature selection by PSO-GA [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1396-1405.
[5] Tao XU,Shuai-di KONG,Cai-hua LIU,Shi LI. Overview of heterogeneous confidential computing [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 755-770.
[6] Sheng JIANG,Yi-di WANG,Rui-lin XIE,Miao-lei XIA. Traffic accident anticipation baed on spatial-temporal relational learning and convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 954-962.
[7] Guang-wen LIU,Xin-yue XIE,Qiang FU,Hua CAI,Wei-gang WANG,Zhi-yong MA. Spatiotemporal Transformer with template attention for target tracking [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 1037-1049.
[8] Hua CAI,Rui-kun ZHU,Qiang FU,Wei-gang WANG,Zhi-yong MA,Jun-xi SUN. Human pose estimation corrector algorithm based on implicit key point interconnection [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 1061-1071.
[9] Xiao-dong CAI,Qing-song ZHOU,Yan-yan ZHANG,Yun XUE. Social recommendation based on global capture of dynamic, static and relational features [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 700-708.
[10] Xiang-jiu CHE,Yu-ning WU,Quan-le LIU. A weighted isomorphic graph classification algorithm based on causal feature learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 681-686.
[11] Li LI,Yu-jian BAO,Wen-chen YANG,Qing-ling CHU,Gui-ping WANG. Standardized constructing method of a roadside multi-source sensing dataset [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 529-536.
[12] Meng-xue ZHAO,Xiang-jiu CHE,Huan XU,Quan-le LIU. A method for generating proposals of medical image based on prior knowledge optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 722-730.
[13] Yuan-ning LIU,Zi-nan ZANG,Hao ZHANG,Zhen LIU. Deep learning-based method for ribonucleic acid secondary structure prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 297-306.
[14] Xiao-ran GUO,Tie-jun WANG,Yue YAN. Entity relationship extraction method based on local attention and local remote supervision [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 307-315.
[15] Hao WANG,Bin ZHAO,Guo-hua LIU. Temporal and motion enhancement for video action recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 339-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIN Song-Yi, GUO Yang, WANG Ying, LIU Jing-Bo, ZHENG Lin, YAN Yong-Guang. Steady state protection factors of antioxidant peptide derived from egg white protein[J]. 吉林大学学报(工学版), 2010, 40(增刊): 395 -0399 .
[2] NIE Xiong-ding, HAN De-zhi, BI Kun. Cloud computing data security[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 332 -336 .
[3] OUYANG Dan-tong, SU Jing, YE Yu-xin, CUI Xian-ji. Local pinpointing of ontology debugging based on model-based diagnosis[J]. 吉林大学学报(工学版), 2014, 44(6): 1757 -1763 .
[4] FENG Jie, CHEN Yao-wu. Background modeling and foreground object segmentation in H.264 compressed domain[J]. 吉林大学学报(工学版), 2011, 41(01): 239 -0243 .
[5] YUAN Chen-heng,FENG Hui-hua,WANG Meng-qiu,ZUO Zheng-xing. Combustion characteristics of free-piston gasoline engine for linear alternator[J]. 吉林大学学报(工学版), 2015, 45(1): 127 -132 .
[6] DING Jin-quan, XU Nan, GUO Kong-hui. Active return control based on imaginary king-pin kinematics calculation[J]. 吉林大学学报(工学版), 2017, 47(1): 21 -27 .
[7] LI Peng-hui, ZHANG Wen-hui, HU Meng-xia, LI Yi-bing, WU Biao. Analysis on saccade behavior of driver during overtaking on freeway[J]. 吉林大学学报(工学版), 2016, 46(1): 114 -119 .
[8] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter[J]. 吉林大学学报(工学版), 2017, 47(6): 1868 -1875 .
[9] Yan-song DIAO,Dang GUO,Kang TU,Sheng-lun JIAO,Yun LIU,Xiu-li LIU. Experiment of seismic behavior of new joints between concrete filled special⁃shaped steel tube column and steel beams[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1724 -1733 .
[10] LIN Jin-hua, WANG Yan-jie, WANG Lu, YAO Yu. Real-time surface reconstruction based global camera pose optimization[J]. 吉林大学学报(工学版), 2018, 48(3): 909 -918 .