吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1868-1875.doi: 10.13229/j.cnki.jdxbgxb201706027

• Orginal Article • Previous Articles     Next Articles

Gyro signal processing based on strong tracking Kalman filter

ZHU Feng1, 2, 3, ZHANG Bao1, 2, LI Xian-tao1, 2, WANG Zheng-xi1, 2, 3, ZHANG Shi-tao1, 2, 3   

  1. 1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
    2.Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences,Changchun 130033,China;
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-08-24 Online:2017-11-20 Published:2017-11-20

Abstract: To overcome the problem that the low measuring precision of the gyroscope leads to degradation of Line of Sight (LOS) stabilization accuracy of photoelectric stabilized platform for aviation, a strong tracking Kalman filter was designed. According to the principle of the time sequence analysis from the random series, Autoregressive method (AR) was adopted to model the preprocessed data measured by the gyroscope. The state-space method was used to design the Kalman filter. In the meantime, in order to increase the control system's robustness, the strong tracking algorithm was introduced to correct the variance of state prediction in real time to construct the strong tracking Kalman filter. The theory and principle of the algorithm were described and applied to the photoelectric stabilized platform for aviation. The results show that the variance of signal was reduced by 44.1% after filtering using the strong tracking Kalman filter, and the dispersion was apparently reduced. At the same time, comparing with the Butterworth filter, the strong tracking Kalman filter shortens the overshoot by 13%, cut down the rise time by 3 ms, shortens the regulation time by 37.5 ms, keeps the platform in good dynamic properties. The study indicated that the strong tracking Kalman filter has strong application value.

Key words: automatic control technology, LOS stabilization accuracy, strong tracking Kalman filter, gyroscope

CLC Number: 

  • TP273
[1] 魏伟,戴明,李嘉全, 等. 航空光电稳定平台的自抗扰控制系统[J]. 光学精密工程,2015,23(8):2296-2305.
Wei Wei, Dai Ming,Li Jia-quan, et al. ADRC control system for airborne opto-electronic platform[J]. Optics and Precision Engineering,2015,23(8):2296-2305.
[2] 李贤涛,张葆,沈宏海. 基于自抗扰控制技术提高航空光电稳定平台的扰动隔离度[J]. 光学精密工程,2014,22(8):2223-2231.
Li Xian-tao, Zhang Bao, Shen Hong-hai. Improvement of isolation degree of aerial photoelectrical stabilized platform based on ADRC[J]. Optics and Precision Engineering,2014,22(8):2223-2231.
[3] 成宇翔,张卫平,陈文元,等. MEMS微陀螺仪研究进展[J]. 微纳电子技术,2011,48(5):277-285.
Cheng Yu-xiang,Zhang Wei-ping,Chen Wen-yuan,et al.Research development of MEMS micro-gyroscopes[J]. Micronanoelectronic Technology,2011,48(5):277-285.
[4] 孙树红,赵长海,万秋华,等. 小型光电编码器自动检测系统[J]. 中国光学,2013,6(4):600-606.
Sun Shu-hong,Zhao Chang-hai,Wan Qiu-hua,et al. Automatic detection system for miniature photoelectrical encoder[J]. Chinese Optics,2013,6(4):600- 606.
[5] Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering Transactions,1960:82(Series D):35-45.
[6] Kirkko-Jaakkola M, Collin J, Takala J. Bias Prediction for MEMS Gyroscopes[J]. IEEE Sensors Journal,2012,12(6):2157-2163.
[7] Park S, Horowitz R. Adaptive control for the conventional mode of operation of MEMS gyroscopes[J]. Journal of Microelectromechanical Systems,2003,12(1):101-108.
[8] 李贤涛,张葆,赵春蕾,等. 基于自适应的自抗扰控制技术提高扰动隔离度[J]. 吉林大学学报:工学版,2015,45(1):202-208.
Li Xian-tao, Zhang Bao, Zhao Chun-lei, et al. Improve isolation degree based on adaptive active disturbance rejection controller[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(1):202-208.
[9] 魏伟,戴明,李嘉全,等. 基于重复-自抗扰控制的航空光电稳定平台控制系统设计[J]. 吉林大学学报:工学版,2015,45(6):1924-1932.
Wei Wei, Dai Ming,Li Jia-quan, et al. Design of airborne opto-electric platform control system based on ADRC and repetitive control theory[J]. Journal of Jilin University(Engineering and Technology Edition), 2015,45(6):1924-1932.
[10] 韩京清. 自抗扰控制技术[J]. 前沿科学,2007(1):24-31.
Han Jing-qing. Active disturbance rejection control technique[J]. Frontier Science,2007(1):24-31.
[11] 丛爽,孙光立,邓科,等.陀螺稳定平台的自抗扰及其滤波控制[J]. 光学精密工程,2016,24(1):169-177.
Cong Shuang, Sun Guang-li, Deng Ke, et al. Active disturbance rejection and filter control of gyro-stabilized platform[J]. Optics and Precision Engineering,2016,24(1):169-177.
[12] 钱华明,夏全喜,阙兴涛,等. 基于Kalman滤波的MEMS陀螺仪滤波算法[J]. 哈尔滨工程大学学报,2010,31(9):1217-1221.
Qian Hua-ming, Xia Quan-xi, Que Xing-tao, et al. Algorithm for a MEMS gyroscope based on Kalman filter[J]. Journal of Harbin Engineering University,2010,31(9):1217-1221.
[13] 李慧,吴军辉,朱霞,等. 速率陀螺式激光导引头稳定跟踪原理分析与仿真[J]. 红外与激光工程,2011,40(7):1337-1341.
Li Hui, Wu Jun-Hui, Zhu Xia, et al. Analysis and tracking principle for rate gyroscope laser seeker[J]. Infrared and Laser Engineering,2011,40(7):1337-1341.
[14] 骆荣剑,李颖,钱广华,等.机动目标跟踪中一种改进的自适应卡尔曼滤波算法[J].重庆邮电大学学报:自然科学版,2015,27(1):31-36.
Luo Rong-jian,Li Ying,Qian Guang-hua,et al.Improved maneuvering target tracking adaptive Kalman filter algorithm[J]. Chongqing University of Posts and Telecommunications Journal(Natural Science Edition),2015,27(1):31-36.
[15] 李刚,蔡成林,李思敏,等.抗差与自适应组合的卡尔曼滤波算法在动态导航中的研究[J].重庆邮电大学学报:自然科学版,2015,27(1):37-43.
Li Gang,Cai Cheng-lin,Li Si-min, et al.Robust adaptive Kalman filter in kinematic positioning[J]. Chongqing University of Posts and Telecommunications Journal(Natural Science Edition),2015,27(1):37-43.
[16] 蒙涛,王昊,李辉, 等. MEMS陀螺误差建模与滤波方法[J]. 系统工程与电子技术,2009,31(8):1944-1948.
Meng Tao, Wang Hao, Li Hui, et al. Error modeling and filtering method for MEMS gyroscope[J]. Systems Engineering and Electronics,2009,31(8):1944-1948.
[17] 宋康宁,丛爽,邓科,等. 自适应强跟踪卡尔曼滤波在陀螺稳定平台中的应用[J]. 中国科学技术大学学报,2015,45(1):17-22.
Song Kang-ning, Cong Shuang, Deng Ke, et al. Application of adaptive strong tracking Kalman filter to gyro-stabilized platform[J]. Journal of University of Science and Technology of China,2015, 45(1):17-22.
[1] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[2] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[3] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[4] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[5] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[6] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[7] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[8] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[9] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[10] FENG Jian-xin. Recursive robust filtering for uncertain systems with delayed measurements [J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[11] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[12] HU Yun-feng, GU Wan-li, LIANG Yu, DU Le, YU Shu-you, CHEN Hong. Start-stop control of hybrid vehicle based on nonlinear method [J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
[13] SHEN Shuai, ZHANG Bao, LI Xian-tao, ZHU Feng, JIN Chao-qiong. Acceleration feedback control based on tracking differentiator [J]. 吉林大学学报(工学版), 2017, 47(4): 1217-1224.
[14] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[15] WANG Chun-yang, XIN Rui-hao, SHI Hong-wei. Decreasing time delay auto-disturbance rejection control method for large time delay systems [J]. 吉林大学学报(工学版), 2017, 47(4): 1231-1237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!