Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 2114-2121.doi: 10.13229/j.cnki.jdxbgxb.20231027

Previous Articles     Next Articles

Multi⁃scale context⁃aware and boundary⁃guided image manipulation detection method

Hai-peng CHEN(),Shi-bo ZHANG,Ying-da LYU()   

  1. College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2023-09-25 Online:2025-06-01 Published:2025-07-23
  • Contact: Ying-da LYU E-mail:chenhp@jlu.edu.cn;ydlv@jlu.edu.cn

Abstract:

Aiming at the problems of traditional image manipulation detection methods, such as fuzzy boundaries, single scale of extracted features, and ignoring background information, this paper proposes an image manipulation detection method based on multi-scale context-aware and boundary-guided. First, spatial details and base features of manipulated images are extracted using an improved pyramid vision transformer. Second, information related to the edge of the falsified region is explored by an edge context-aware module to generate an edge prediction map. Again, the edge guidance module is utilized to highlight the key channels in the extracted features and reduce the interference of redundant channels. Then, the rich contextual information of the manipulated region is learned from multiple sensory fields through the multi-scale context-aware module. Finally, the feature fusion module is utilized to accurately segment the manipulated region by focusing alternately on the foreground and background of the manipulated images. Comparing this paper's method quantitatively and qualitatively on five commonly used public image manipulation detection datasets, the experimental results show that this paper's method can effectively detect manipulated regions and outperforms other methods.

Key words: computer application, image manipulation detection, multi-scale context-aware, boundary guidance

CLC Number: 

  • TP391

Fig.1

Overview of proposed network structure"

Fig.2

Architecture of the edge-aware module"

Fig.3

Architecture of the edge-guidance feature module"

Fig.4

Architecture of multi-scale context- aware module"

Fig.5

Architecture of feature fusion module"

Table 1

Description of the dataset"

数据集规模类别后处理操作
训练集测试集拼接复制-粘贴移除
CASIA135 123921
NIST14404160
Columbia15180
COVER167525
IMD2020171 610400

Table 2

Quantitative comparison of this paper's method with other methods on five datasets"

方法CASIANISTColumbiaCOVERIMD2020Mean
AUCF1AUCF1AUCF1AUCF1AUCF1AUCF1
ManTra180.7960.2670.9590.6380.7360.2430.7770.2830.7730.2490.8080.336
SPAN190.7090.2130.7790.2520.7410.4630.7910.3250.7550.313
MVSS200.8470.3180.9810.7680.8080.4170.8080.2840.8020.3960.8490.437
GSRNet80.8360.3400.9670.6400.9000.4330.7880.2180.8730.408
DenseFCN210.8090.2030.9790.8120.7610.2570.7540.1850.7150.2720.8040.346
LocateNet220.7540.2730.9860.7380.7180.4110.8130.2820.8180.426
EMTNet100.8560.4590.9870.8250.8320.5610.8120.3530.8720.550
Ours0.8480.6470.9650.8980.7700.6090.7760.3720.8010.5070.8320.607

Fig.6

Qualitative comparison of this paper's method with other methods"

Table 3

Quantitative results of different components on CASIA dataset"

方法组件AUCF1
EAMEFMMCAMFFM
a.Baseline0.8000.595
b.Baseline+EAM0.8160.617
c.Baseline+EAM+EFM0.8350.634
d.Baseline+EAM+EFM+MCAM0.8410.639
e.Baseline+EAM+EFM+MCAM+FFM0.8480.647

Table 4

Robustness comparison of F1scores on NIST dataset"

后处理方法参数值方法
本文MVSSSPANManTraGSRNetDenseFCNLocateNetEMTNet
高斯噪声标准差=30.8720.7640.1640.0600.6020.8020.7240.822
标准差=90.8540.7580.1650.0510.6030.7490.7070.809
标准差=150.8390.7510.1650.0500.5970.6900.6820.808
JPEG 压缩质量因子=500.8730.7610.2500.1860.5670.8110.6910.812
质量因子=750.8870.7700.2520.2260.5690.8120.7360.825
质量因子=1000.8910.7660.2520.4570.5720.8110.7380.825
高斯模糊卷积核=30.8800.7680.2490.1980.6020.8020.7370.824
卷积核=90.8560.7420.2390.1650.5830.7490.7160.811
卷积核=150.8150.7110.2310.1610.5730.6900.6450.782
[1] Shi Z, Chen H, Zhang D. Transformer-auxiliary neural networks for image manipulation localization by operator inductions[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 4907-4920.
[2] 钟辉, 康恒, 吕颖达, 等. 基于注意力卷积神经网络的图像篡改定位算法[J]. 吉林大学学报: 工学版, 2021, 51(5): 1838-1844.
Zhong Hui, Kang Heng, Ying-da Lyu, et al. Image manipulation localization algorithm based on channel attention convolutional neural networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1838-1844.
[3] 石泽男, 陈海鹏, 张冬, 等. 预训练驱动的多模态边界感知视觉Transformer[J]. 软件学报, 2023, 34(5): 2051-2067.
Shi Ze-nan, Chen Hai-peng, Zhang Dong, et al. Pretraining-driven multimodal boundary-aware vision transformer[J]. Journal of Software, 2023, 34(5): 2051-2067.
[4] Xu D, Shen X, Lyu Y, et al. MC-Net: Learning mutually complementary features for image manipulation localization[J]. International Journal of Intelligent Systems, 2022, 37(5): 3072-3089.
[5] Mahdian B, Saic S. Using noise inconsistencies for blind image forensics[J]. Image and Vision Computing, 2009, 27(10): 1497-1503.
[6] Lin Z, He J, Tang X, et al. Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis[J]. Pattern Recognition, 2009, 42(11): 2492-2501.
[7] Popescu A C, Farid H. Exposing digital forgeries in color filter array interpolated images[J]. IEEE Transactions on Signal Processing, 2005, 53(10): 3948-3959.
[8] Zhou P, Chen B C, Han X, et al. Generate, segment, and refine: towards generic manipulation segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA, 2020: 13058-13065.
[9] Wang J, Wu Z, Chen J, et al. Objectformer for image manipulation detection and localization[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 2364-2373.
[10] Lin X, Wang S, Deng J, et al. Image manipulationdetection by multiple tampering traces and edge artifact enhancement[J]. Pattern Recognition, 2023, 133:109026-109036.
[11] Wang W, Xie E, Li X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424.
[12] 胡林辉, 陈保营, 谭舜泉, 等. 基于Convnext-Upernet的图像篡改检测定位模型[J/OL]. [2023-09-10].
Hu Lin-hui, Chen Bao-ying, Tan Shun-quan, et al. Convnext-Upernet based deep-learning model for image forgery detection and localization[J/OL]. [2023-09-10].
[13] Dong J, Wang W, Tan T. Casia image tampering detection evaluation database[C]∥2013 IEEE China Summit and International Conference on Signal and Information Processing, Beijing, China, 2013: 422-426.
[14] Guan H, Kozak M, Robertson E, et al. MFC datasets: Large-scale benchmark datasets for media for ensic challenge evaluation[C]∥2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), Waikoloa, USA, 2019: 63-72.
[15] Hsu Y F, Chang S F. Detecting image splicing usinggeometry invariants and camera characteristics consistency[C]∥2006 IEEE International Conference on Multimedia and Expo, Toronto, Canada, 2006: 549-552.
[16] Wen B, Zhu Y, Subramanian R, et al. COVERAGE: a novel database for copy-move forgery detection[C]∥2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 161-165.
[17] Novozamsky A, Mahdian B, Saic S. IMD2020: a large-scale annotated dataset tailored for detecting manipulated images[C]∥Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, Snowmass Village, USA, 2020: 71-80.
[18] Wu Y, AbdAlmageed W, Natarajan P. Mantra-net: Manipulation tracing network for detection and localization of image forgeries with anomalous features[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9543-9552.
[19] Hu X, Zhang Z, Jiang Z, et al. SPAN: spatial pyramid attention network for image manipulation localization[C]∥Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 2020: 312-328.
[20] Chen X, Dong C, Ji J, et al. Image manipulation detection by multi-view multi-scale supervision[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 14165-14173.
[21] Zhuang P, Li H, Tan S, et al. Image tampering localization using a dense fully convolutional network[J].IEEE Transactions on Information Forensics and Security, 2021, 16: 2986-2999.
[22] Zhuo L, Tan S, Li B, et al. Self-adversarial training incorporating forgery attention for image forgery localization[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 819-834.
[1] Jian WANG,Chen-wei JIA. Trajectory prediction model for intelligent connected vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1963-1972.
[2] Xiang-jiu CHE,Yu-peng SUN. Graph node classification algorithm based on similarity random walk aggregation [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2069-2075.
[3] Ping-ping LIU,Wen-li SHANG,Xiao-yu XIE,Xiao-kang YANG. Unbalanced image classification algorithm based on fine⁃grained analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2122-2130.
[4] Feng-feng ZHOU,Zhe GUO,Yu-si FAN. Feature representation algorithm for imbalanced classification of multi⁃omics cancer data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2089-2096.
[5] Hong-wei ZHAO,Ming-zhu ZHOU,Ping-ping LIU,Qiu-zhan ZHOU. Medical image segmentation based on confident learning and collaborative training [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1675-1681.
[6] Yue HOU,Jin-song GUO,Wei LIN,Di ZHANG,Yue WU,Xin ZHANG. Multi-view video speed extraction method that can be segmented across lane demarcation lines [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1692-1704.
[7] Zi-hao SHEN,Yong-sheng GAO,Hui WANG,Pei-qian LIU,Kun LIU. Deep deterministic policy gradient caching method for privacy protection in Internet of Vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1638-1647.
[8] You-wei WANG,Ao LIU,Li-zhou FENG. New method for text sentiment classification based on knowledge distillation and comment time [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1664-1674.
[9] Jun WANG,Chang-fu SI,Kai-peng WANG,Qiang FU. Intrusion detection method based on ensemble learning and feature selection by PSO-GA [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1396-1405.
[10] Tao XU,Shuai-di KONG,Cai-hua LIU,Shi LI. Overview of heterogeneous confidential computing [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 755-770.
[11] Meng-xue ZHAO,Xiang-jiu CHE,Huan XU,Quan-le LIU. A method for generating proposals of medical image based on prior knowledge optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 722-730.
[12] Xiao-dong CAI,Qing-song ZHOU,Yan-yan ZHANG,Yun XUE. Social recommendation based on global capture of dynamic, static and relational features [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 700-708.
[13] Xiang-jiu CHE,Yu-ning WU,Quan-le LIU. A weighted isomorphic graph classification algorithm based on causal feature learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 681-686.
[14] Xiao-ran GUO,Tie-jun WANG,Yue YAN. Entity relationship extraction method based on local attention and local remote supervision [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 307-315.
[15] Hao WANG,Bin ZHAO,Guo-hua LIU. Temporal and motion enhancement for video action recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 339-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. 吉林大学学报(工学版), 2006, 36(06): 0 -0008 .
[2] Li Shao-hua,Huang Hui,Guo Ting-ting,Pu Jian-ye. Numerical simulations of particle trajectory in turbulent jettocross flow[J]. 吉林大学学报(工学版), 2006, 36(06): 1029 -1033 .
[3] Li Jian-qiao;Wen Li-ge;Zhang Xiu-zhi;Tan Li . Parameterized design method for blade to chop stubble based on UG[J]. 吉林大学学报(工学版), 2008, 38(03): 595 -0598 .
[4] Yao Zhi-sheng, Shao Chun-fu, Xiong Zhi-hua, Yue Hao . Short-term traffic volumes forecasting of road network based on principal component analysis and support vector machine[J]. 吉林大学学报(工学版), 2008, 38(01): 48 -52 .
[5] Zhao Hong-wei,Liu Ping-ping,Zang Xue-bai,Zhang Ren-jun,Li Jun-ling,Wang Li-li . Thinking computation:hominine machine intelligence based
on logic inference and image inference
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 130 -133 .
[6] Zhang Jian-hong,Zuo Chun-cheng,Qian Sheng-jun,Qi Pei-zheng . Simulation of impact test bench with pendulum
based on bearing clearance model
[J]. 吉林大学学报(工学版), 2007, 37(03): 553 -0557 .
[7] Zhao Ding-xuan;Feng Shi-zhu;Gong Ming-de;Deng Le. Improved force feedback control method for construction telerobot [J]. 吉林大学学报(工学版), 2008, 38(03): 575 -0579 .
[8] . [J]. 吉林大学学报(工学版), 2005, 35(03): 243 -248 .
[9] Du Zhongze, Huang Junxia, Fu Hanguang, Wang Jingtao, Zhao Xicheng. Microstructure and mechanical property of 65Mn steel after severe plastic deformation[J]. 吉林大学学报(工学版), 2006, 36(02): 143 -0147 .
[10] Yu xi-zheng;Zheng jian-hua;Gao huai-bao;Liu zheng-chang . Transfer trajetory design between L1 and L2 in the EarthMoon system[J]. 吉林大学学报(工学版), 2008, 38(03): 741 -0745 .