Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (9): 2401-2413.doi: 10.13229/j.cnki.jdxbgxb.20231068

   

Temperature control of proton exchange membrane fuel cell thermal management system based on APSO-BP-PID control strategy

Lei SHANG1(),Ping YANG2,Xiang-guo YANG1(),Jian-xin PAN3,Jun YANG3,Meng-ru ZHANG1   

  1. 1.School of Naval Architecture,Ocean and Energy Power Engineering,Wuhan University of Technology,Wuhan 430063,China
    2.School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan 430063,China
    3.Technology R&D Center,Wuhan Institute of Hydrogen and Fuel Cell Industrial Technology Co. ,Ltd. ,Wuhan 430064,China
  • Received:2023-10-09 Online:2024-09-01 Published:2024-10-28
  • Contact: Xiang-guo YANG E-mail:shanglei@whut.edu.cn;yangxiangguo123@163.com

Abstract:

Aiming at solving the issues of slow response, system oscillation, large temperature fluctuation and strong coupling of the proton exchange membrane fuel cell thermal management system, this paper proposes a coolant flow following the current control, optimizes the PID control strategy of neural network based on adaptive particle swarm algorithm, and constructs a 125 kW proton exchange membrane fuel cell thermal management system on the Matlab/Simulink platform to analyze the flow distribution and heat exchange between components. Compared with PID control strategy optimized by neural network and traditional PID control strategy under different working conditions. -The simulation results show that the control strategy proposed in this paper can realize the decoupling of cooling fan and circulating water pump under different working conditions; Under the step signal test, the flow rate of the circulating water pump follows the current and responds quickly; Under the dynamic performance test, the air volume control of the cooling fan is achieved without overshoot and stable within 30 s, reducing the oscillation of the system, and both the temperature difference between the inlet and outlet coolant of the fuel cell stack and the fluctuation degree of the fuel cell stack voltage is decreased. The results indicate that the proposed control strategy achieves satisfying control performance.

Key words: power mechanical engineering, fuel cell, neural network, thermal management system, control strategy

CLC Number: 

  • TM911.4

Fig.1

Schematic diagram of thermal management system"

Fig.2

Fuel cell stack voltage model"

Table 1

Fuel cell related parameters"

参数数值
膜电极数量340片
双极板类型金属板
质子交换膜反应面积/cm2304
质子交换膜厚度/mm0.012 5
散热方式水冷
燃料电池堆温度/℃75

Fig.3

Polarization curve and power curve of 125 kW fuel cell stack at different temperatures"

Table 2

Rated work conditions parameters of 125 kW fuel cell stack"

参数数值参数数值
λ/[W·(m·K)-10.023Ist/A534
A/m21.972Ncells340
δ/m0.05σ/[W·(m2·K)-15.67×10-8
Δt/K50Tst/K348

Table 3

EPH1500H-00 fuel cell water pump parameter"

参数数值
使用介质温度/℃-40~95
额定流量/(L·min-1210
额定扬程/m22
额定转速(r·min-16 950

Fig.4

Control strategy schematic"

Fig.5

APSO-BP-PID control strategy"

Fig.6

Schematic diagram of BP neural network structure"

Fig.7

Iteration curve and KP、KI and KD optimization curve"

Fig.8

APSO-BP-PID control strategy algorithm flowchart"

Fig.9

Comparison of polarization curve of 125 kW fuel cell"

Fig.10

Thermal management system validation diagram"

Fig.11

Step test comparison diagram"

Fig.12

Dynamic performance test comparison diagram"

Fig.13

Temperature difference fluctuation of the fuel cell stack inlet and outlet cooling water"

Fig.14

Degree of fluctuation in the voltage of fuel cell stack"

1 徐东, 刘岩, 李志勇, 等. 氢能开发利用经济性研究综述[J]. 油气与新能源, 2021,33(2): 50-56.
Xu Dong, Liu Yan, Li Zhi-yong, et al. Review of economic research on hydrogen energy development and utilization[J]. Oil & Gas & New Energy, 2021,33(2): 50-56.
2 Zhou M G, Hu T T. Analysis of carbon emission status under the carbon neutral target in China for earth's atmospheric balance[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804(4): No. 042082.
3 Kang J N, Wei Y M, Liu L C, et al. Observing technology reserves of carbon capture and storage via patent data: paving the way for carbon neutral[J]. Technological Forecasting & Social Change, 2021, 171(6): No. 120933.
4 刘镇宁, 江柯, 赵韬韬,等. 大功率质子交换膜燃料电池测试系统的开发及试验[J]. 吉林大学学报:工学版, 2022, 52(9): 2025-2033.
Liu Zhen-ning, Jiang Ke, Zhao Tao-tao, et al. Development and test of high-power proton exchange membrane fuel cell test system[J]. Journal of Jilin University(Engineering and Technology Edition, 2022, 52(9): 2025-2033.
5 李洁. 燃料电池温度控制研究[D]. 武汉: 武汉理工大学自动化学院, 2015.
Li Jie. Research on temperature control of fuel cell[D]. Wuhan: School of Automation, Wuhan University of Technology, 2015.
6 Zhao X, Li Y, Liu Z, et al. Thermal management system modeling of a water-cooled proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3048-3056.
7 李春华, 朱新坚. 基于递归模糊神经网络的PEMFC温度控制研究[J]. 热能动力工程, 2012, 27(6): 721-725,741-742.
Li Chun-hua, Zhu Xin-jian. Research on PEMFC temperature control based on recurrent fuzzy neural Network[J]. Journal of Engineering for Thermal Energy and Power, 2012, 27(6): 721-725,741-742.
8 Han J, Yu S, Yi S. Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm[J]. International Journal of Hydrogen Energy, 2017, 42(7): 4328-4341.
9 Chen F, Jiao J, Yu Y, et al. Active control of stack inlet and outlet coolant temperature for the PEM fuel cell system[C]∥2017 International Conference on Fuel Cell Science, Engineering and Technology, Tianjin, China, 2017: No. V001T01A001.
10 Carton J G, Lawlor V, Olabi A G, et al. Water droplet accumulation and motion in PEM (proton exchange membrane) fuel cell mini-channels[J]. Energy, 2012, 39(1): 63-73.
11 Rojas J D, Ocampo-Martinez C, Kunusch C. Thermal modelling approach and model predictive control of a water-cooled PEM fuel cell system[C]∥39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013: 3806-3811.
12 Zhao D, Gao F, Massonnat P, et al. Parameter sensitivity analysis and local temperature distribution effect for a PEMFC system[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 1008- 1018.
13 牛茁. 水冷型质子交换膜燃料电池热管理系统控制研究[D]. 成都: 西南交通大学电气工程学院,2018.
Niu Zhuo. Research on control of thermal management system of water-cooled proton exchange membrane fuel cell[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2018.
14 赵洪波, 刘杰, 马彪,等. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报, 2020, 71(5): 2139-2150.
Zhao Hong-bo, Liu Jie, Ma Biao, et al. Control strategy and simulation research of water-cooled PEMFC thermal management system[J]. CIESC Journal, 2020, 71(5): 2139-2150.
15 裴尧旺, 陈凤祥, 胡哲,等. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报:工学版, 2022, 52(9): 2014-2024.
Pei Yao-wang, Chen Feng-xiang, Hu Zhe, et al. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2014-2024.
16 Huang L H, Chen J, Liu Z Y, et al. Adaptive thermal control for PEMFC systems with guaranteed performance[J]. International Journal of Hydrogen Energy, 2018, 43(25): 11550-11558.
17 Chen F X, Jiao J R, Hou Z J, et al. Robust polymer electrolyte membrane fuel cell temperature tracking control based on cascade internal model control[J]. Journal of Power Sources, 2020, 479: No. 229008.
18 Pukrushpan J T. Modeling and control of fuel cell systems and fuel processors[D]. Michigan: The University of Michigan, 2003.
19 Saygili Y, Eroglu I, Kincal S. Model based temperature controller development for water cooled PEM fuel cell systems[J]. International Journal of Hydrogen Energy, 2015, 40(1): 615-622.
20 刘岩, 丁天威, 王宇鹏,等. 基于自适应控制的燃料电池发动机热管理策略[J].吉林大学学报:工学版, 2022, 52(9): 2168-2174.
Liu Yan, Ding Tian-wei, Wang Yu-peng, et al. Thermal management strategy of fuel cell engine based on adaptive control strategy[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[1] Chao-lu TEMUR,Ya-ping ZHANG. Link anomaly detection algorithm for wireless sensor networks based on convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2295-2300.
[2] Sheng-jie ZHU,Xuan WANG,Fang XU,Jia-qi PENG,Yuan-chao WANG. Multi-scale normalized detection method for airborne wide-area remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2329-2337.
[3] Hong-wei ZHAO,Hong WU,Ke MA,Hai LI. Image classification framework based on knowledge distillation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2307-2312.
[4] Jin-zhou ZHANG,Shi-qing JI,Chuang TAN. Fusion algorithm of convolution neural network and bilateral filtering for seam extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2313-2318.
[5] Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776.
[6] Xiao-hui WEI,Chen-yang WANG,Qi WU,Xin-yang ZHENG,Hong-mei YU,Heng-shan YUE. Systolic array-based CNN accelerator soft error approximate fault tolerance design [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1746-1755.
[7] Xi-jun ZHANG,Guang-jie YU,Yong CUI,Ji-yang SHANG. Short-term traffic flow prediction based on clustering algorithm and graph neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1593-1600.
[8] Guang-bao LI,Dong GAO,Yong LU,Hao PING,Yuan-yuan ZHOU. Internal surface treatment of gas-liquid-solid technology based on improved neural network and Fluent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1537-1547.
[9] Ya-qin QIN,Zheng-fu QIAN,Ji-ming XIE. Vehicle cooperative obstacle avoidance strategy driven by CLAM model and trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1311-1322.
[10] Xi-guang ZHANG,Long-fei ZHANG,Yu-xi MA,Yin-ting FAN. Design of fuzzy clustering algorithm for massive cloud data based on density peak [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1401-1406.
[11] Xue-jing DU,Ning WANG,Jie ZHANG,Yu-long PEI. Control strategy of lateral stability of semi-trailer train in dangerous section of cold area [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 996-1006.
[12] Chao XIA,Meng-jia WANG,Jian-yue Zhu,Zhi-gang YANG. Reduced-order modelling of a bluff body turbulent wake flow field using hierarchical convolutional neural network autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 874-882.
[13] Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332.
[14] You ZHOU,Wei HONG,Fang-xi XIE,Yu LIU,Xun GONG,Xiao-ping LI. Influence of valve control strategy to improve un⁃throttle engine performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 55-65.
[15] Hai-long GAO,Yi-bo XU,Kun LIU,Chun-yang LI,Xiao-yu LU. High-speed highway road network short-term traffic flow parameters based on multi-source data fusion prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 155-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!