| [1] |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J].计算机学报, 2020, 43(5): 755-780.
|
|
Xu Bing-bing, Cen Ke-ting, Huang Jun-jie, et al. A survey on graph convolutional neutral network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780.
|
| [2] |
刘俊奇, 涂文轩, 祝恩. 图卷积神经网络综述[J].计算机工程与科学, 2023, 45(8): 1472-1481.
|
|
Liu Jun-qi, Tu Wen-xuan, Zhu En. Survey on graph convolutional neutral network[J]. Computer Engineering & Science, 2023, 45(8): 1472-1481.
|
| [3] |
Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J/OL].[2016-02-16]. .
|
| [4] |
Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs[J]. Advances in Neural Information Processing Systems, 2017, 30: 1024-1034.
|
| [5] |
Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[[J/OL].[2017-06-16]. .
|
| [6] |
Brody S, Alon U, Yahav E. How attentive are graph attention networks?[J/OL].[2021-06-26]. .
|
| [7] |
Ying Z, You J, Morris C, et al. Hierarchical graph representation learning with differentiable pooling[J]. Advances in Neural Information Processing Systems, 2018, 31: 4800-4810.
|
| [8] |
Gao H Y, Ji S W. Graph U-nets[C]∥Proceedings of the 36th International Conference on Machine Learning. New York: Curran Associates, Inc., International Machine Learning Society, 2019: 2083-2092.
|
| [9] |
Lee J, Lee I, Kang J. Self-attention graph pooling[C]∥Proceedings of the 36th International Conference on Machine Learning. New York: Curran Associates, Inc., International Machine Learning Society, 2019: 3734-3743.
|
| [10] |
Luo Y, McThrow M, Au W Y, et al. Automated data augmentations for graph classification[J/OL].[2022-08-11]. .
|
| [11] |
Bai Y, Ding H, Bian S, et al. SimGNN: A neural network approach to fast graph similarity computation[C]∥Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. Yew York: ACM, 2019: 384-392.
|
| [12] |
Bai Y, Ding H, Gu K, et al. Learning-based efficient graph similarity computation via multi-scale convolutional set matching[J]. AAAI, 2020, 34(4): 3219-3226.
|
| [13] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25: 1106-1114.
|
| [14] |
Ling X, Wu L, Wang S,et al.Multilevel graph matching networks for deep graph similarity learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34: 799-813.
|
| [15] |
Qin C, Zhao H, Wang L, et al. Slow learning and fast inference: Efficient graph similarity computation via knowledge distillation[J]. Advances in Neural Information Processing Systems, 2021, 34: 14110-14121.
|
| [16] |
Ranjan R, Grover S, Medya S, et al. GREED: a neural framework for learning graph distance functions[J]. Advances in Neural Information Processing Systems, 2022, 35: 22518-22530.
|
| [17] |
Zhuo W, Tan G. Efficient graph similarity computation with alignment regularization[J]. Advances in Neural Information Processing Systems, 2022, 35: 30181-30193.
|
| [18] |
Qureshi R J, Ramel J Y, Cardot H. Graph based shapes representation and recognition[C]∥Graph-Based Representations in Pattern Recognition: 6th IAPR-TC-15 International Workshop. Berlin: Springer, 2007: 49-60.
|
| [19] |
Bromley J, Guyon I, LeCun Y, et al. Signature verification using a "siamese" time delay neural network[J]. Advances in Neural Information Processing Systems, 1993, 6: 737-744.
|
| [20] |
Socher R, Chen D, Manning C D, et al. Reasoning with neural tensor networks for knowledge base completion[J]. Advances in Neural Information Processing Systems, 2013, 26: 926-934.
|
| [21] |
Wang X, Ding X, Tung A K H, et al. An efficient graph indexing method[C]∥Proceedings of the 28th IEEE International Conference on Data Engineering, Piscataway, USA, 2012: 210-221.
|
| [22] |
Yanardag P, Vishwanathan S V N. Deep graph kernels[C]∥Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York,USA, 2015: 1365-1374.
|
| [23] |
Neuhaus M, Riesen K, Bunke H. Fast suboptimal algorithms for the computation of graph edit distance[C]∥Structural, Syntactic, and Statistical Pattern Recognition, Berlin,Germany, 2006: 163-172.
|
| [24] |
Kuhn H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1/2): 83-97.
|
| [25] |
Riesen K, Bunke H. Approximate graph edit distance computation by means of bipartite graph matching[J]. Image and Vision Computing, 2009, 27(7): 950-959.
|
| [26] |
Fankhauser S, Riesen K, Bunke H. Speeding up graph edit distance computation through fast bipartite matching[C]∥Graph-Based Representations in Pattern Recognition: The 8th IAPR-TC-15 International Workshop, Berlin,Germany, 2011: 102-111.
|
| [27] |
Jonker R, Volgenant T. A shortest augmenting path algorithm for dense and sparse linear assignment problems[J]. Computing, 1987, 38(4): 325-340.
|
| [28] |
Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering[J]. Advances in Neural Information Processing Systems, 2016, 29: 3844-3852.
|