Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (10): 3253-3261.doi: 10.13229/j.cnki.jdxbgxb.20231432

Previous Articles    

Fatigue crack propagation mechanism of thin-walled steel circular tube under tension-torsion proportional mixed mode loading

Hua-wen YE1,2(),Jia-lin DENG1,Zhi-hao FENG1,Zhe YANG1,Wei-zhou PAN1   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.State Key Laboratory of Bridge Intelligent and Green Construction,Southwest Jiaotong University,Chengdu 611756,China
  • Received:2023-10-29 Online:2025-10-01 Published:2026-02-03

Abstract:

To address the problem of life assessment for thin-walled cracked steel circular tube under tension-torsion composite fatigue loading, this paper conducts a study on the fatigue crack propagation mechanism. Firstly, based on the maximum circumferential stress criterion and the Paris equation, a analysis model for crack propagation of pre-cracked thin-walled steel circular tube subjected to tension-torsion biaxial proportional in-phase cyclic loading is established. Secondly, based on existing fatigue tests, the interactive techniques of finite element software ANSYS and FRANC3D is jointly used to simulate the crack propagation behavior of steel circular tube, validate this paper's proposed composite crack propagation analysis model. Finally, based on the finite element model, parameter analyses are conducted on factors such as shear-to-tensile stress ratio, diameter-to-thickness ratio, and initial damage size. The results demonstrate that this paper's proposed analysis model accurately predicts crack propagation behavior of thin-walled steel circular tube (with diameter-to-thickness ratios exceeding 10) under tension-torsion composite fatigue loading. Under tension-torsion in-phase proportional fatigue loading conditions, the composite cracks in thin-walled steel tubes quickly evolve into opening-mode (Mode I) cracks, with the crack propagation angle determined by the maximum nominal shear-to-tensile stress ratio. The shear-to-tension stress ratio and initial damage length were identified as the primary factors on the composite crack propagation behavior of the steel circular tubes under small-scale yield condition with the identical maximum principal tensile stress and stress ratio.

Key words: tension-torsion composite fatigue, thin-walled steel circular tube, crack propagation, in-phase proportional cyclic loading, shear-to-tension stress ratio

CLC Number: 

  • TU391

Fig.1

Stress and crack propagation analysis model of pre-cracked steel tubes"

Fig.2

Steel circular tube specimen(unit: mm)"

Fig.3

Finite element simulation of crack propagation analysis"

Fig.4

Distribution of circumferential maximum tensile stress"

Fig.5

Distribution of circumferential and radial maximum shear stress"

Fig.6

Distribution of maximum principal tensile stress at notch"

Fig.7

Comparison of crack propagation rajectories"

Fig.8

Comparison of fatigue crack propagation"

Fig.9

Variation of stress intensity factors duringcrack propagation"

Table 1

Key parameters for crack propagation analysis"

关键参数基准值研究范围
最大剪-拉应力比τmax/σmax0.62τmax=0 (轴拉)、0.62、1.0、σmax=0 (纯扭)
初始损伤长度L/(πD

0.105(D=42.4 mm,

L=14 mm)

0.03、0.105、0.21
钢管径厚比D/t16(t=2.6 mm)10、16、20

Fig.10

Effect of ratio of maximum tension-to-shear stress"

Fig.11

Effect of initial damage length"

Fig.12

Effect of diameter-to-thickness ratios"

[1] 陈以一, 王伟, 周锋. 钢管结构:新需求驱动的形式拓展和性能提升[J]. 建筑结构学报, 2019, 40(3): 1-20.
Chen Yi-yi, Wang Wei, Zhou Feng. Steel tubular structures: configuration innovation and performance improvement driven by new requirements[J]. Journal of Building Structures, 2019, 40(3): 1-20.
[2] 韩林海, 牟廷敏, 王法承, 等. 钢管混凝土混合结构设计原理及其在桥梁工程中的应用[J]. 土木工程学报, 2020, 53(5): 1-24.
Han Lin-hai, Mu Ting-min, Wang Fa-cheng, et al. Design theory of CFST (concrete-filled steel tubular) mixed structures and its applications in bridge engineering[J]. China Civil Engineering Journal, 2020, 53(5): 1-24.
[3] 秦荣, 谢肖礼, 彭文立, 等. 钢管混凝土拱桥钢管开裂事故分析[J]. 土木工程学报, 2001, 34(3): 74-77.
Qin Rong, Xie Xiao-li, Peng Wen-li, et al. Analysis for cracking accidents of concrete-filled-steel-tube arch bridge[J]. China Civil Engineering Journal, 2001, 34(3): 74-77.
[4] 黄汉辉, 陈康明, 吴庆雄, 等. 某中承式钢管混凝土桁式拱肋节点疲劳开裂分析[J]. 工程力学, 2017, 34(): 167-173.
Huang Han-hui, Chen Kang-ming, Wu Qing-xiong, et al. Study on fatigue cracking of joint in a half-through CFST truss arch rib joint[J]. Engineering Mechanics, 2017, 34(Sup.1): 167-173.
[5] Wang Q, Nakamura S, Chen B C, et al. Fatigue damage of a half-through concrete-filled steel tubular trussed arch bridge in China[C]∥Proceedings of the World Congress on Advances in Structural Engineering and Mechanics. Wrocław, Poland, 2015:1169-1182.
[6] 姜磊, 刘永健, 王康宁. 焊接管节点结构形式发展及疲劳性能对比[J]. 建筑结构学报, 2019, 40(3):180-191.
Jiang lei, Liu Yong-jian, Wang Kang-ning. Development of welded tubular joints and comparison of fatigue behaviour[J]. Journal of Building Structures, 2019, 40(3): 180-191.
[7] 廖芳芳, 王伟, 李文超, 等. 钢结构节点断裂的研究现状[J]. 建筑科学与工程学报, 2016, 33(1): 67-75.
Liao Fang-fang, Wang Wei, Li Wen-chao, et al. Review on research status of connection fracture of steel structures[J]. Journal of Architecture and Civil Engineering, 2016, 33(1): 67-75.
[8] Wang Y, Wang W, Zhang B, et al. A review on mixed mode fracture of metals[J]. Engineering Fracture Mechanics, 2020: No.107126.
[9] 童乐为, 顾敏, 朱俊, 等. 基于断裂力学的圆钢管混凝土T型焊接节点疲劳寿命预测[J]. 工程力学, 2013, 30(4): 331-336, 354.
Tong Le-wei, Gu Ming, Zhu Jun, et al. Prediction of fatigue life for welded t-joints of concrete-filled circular hollow sections based on fracture mechanics[J]. Engineering Mechanics, 2013, 30(4): 331-336, 354.
[10] 程睿, 陈阳, 崔佳, 等. 支管在轴向荷载作用下Q460C高强钢T型圆管节点疲劳性能试验研究[J]. 土木工程学报, 2017, 50(4): 57-63, 124.
Cheng Rui, Chen Yang, Cui Jia, et al. Experimental study on fatigue behavior of Q460C high strength steel welded tubular T-joints under axial loading[J]. China Civil Engineering Journal, 2017, 50(4): 57-63, 124.
[11] 吴庆雄, 罗健平, 杨益伦, 等. 钢管混凝土KK型节点疲劳性能试验[J].交通运输工程学报,2024,24(1):100-116.
Wu Qing-xiong, Luo Jian-ping, Yang Yi-lun, et al. Fatigue performance test of KK-type joints of concrete-filled steel tubes[J]. Journal of Traffic and Transportation Engineering, 24(1):100-116.
[12] 张道明, 梁力. 轴向拉伸钢管Ⅰ型裂纹尖端的应力场[J]. 力学与实践, 2015, 37(4): 513-517, 507.
Zhang Dao-ming, Liang Li. The stress field at mode I crack tip on steel pipe under axial tension[J]. Mechanics in Engineering, 2015, 37(4): 513-517, 507.
[13] Fu G, Yang W, Li C Q. Stress intensity factors for mixed mode fracture induced by inclined cracks in pipes under axial tension and bending[J]. Theoretical and Applied Fracture Mechanics, 2017, 89: 100-109.
[14] Tanaka K, Takahash H, Akiniwa Y. Fatigue crack propagation from a hole in tubular specimens under axial and torsional loading[J]. International Journal of Fatigue, 2006, 28(4): 324-334.
[15] Hos Y, Freire J, Vormwald M. Measurements of strain fields around crack tips under proportional and non-proportional mixed-mode fatigue loading[J]. International Journal of Fatigue, 2016, 89: 87-98.
[16] 中国航空研究院. 应力强度因子手册[M]. 北京: 科学出版社, 1981.
[17] ASTM. Standard test method for measurement of fatigue crack growth rates: ASTM E647-11[Z]. West Conshohocken, PA: ASTM, 2011.
[1] Ya-ning CUI,Chun-di SI,Tao-tao FAN,Fei WANG. Analysis on crack propagation of asphalt bridge deck pavement under water-force coupling action [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1988-1996.
[2] Lei WANG,Dong-xia LI,Song ZHOU,Li HUI,Zhen-xin SHEN. Fatigue crack propagation behavior and life prediction of 2024-O aluminum alloy FSW joints [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1563-1569.
[3] Lei WANG,Xiao-peng LIU,Song ZHOU,Jin-lan AN,Hong-jie ZHANG,Jia-hui CONG. Effect of ultrasonic rolling on fatigue crack propagation behavior of 2024 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3486-3495.
[4] Sheng-tong DI,Chao JIA,Wei-guo QIAO,Kang LI,Kai TONG. Loading rate effect of mesodamage characteristics of crumb rubber concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1900-1910.
[5] Yi-lun LIU,Qing WANG,Chi LIU,Song-bai LI,Jun HE,Xian-qiong ZHAO. Effect of creep and artificial aging on fatigue crack growth performance of 2524 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1636-1643.
[6] CAO Shan-shan, LEI Jun-qing. Fatigue life prediction of steel structure considering interval uncertainty [J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!