吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 74-80.doi: 10.13229/j.cnki.jdxbgxb201401013

• paper • Previous Articles     Next Articles

Air voids distribution of asphalt mixtures in different compaction methods and aggregate gradations

WANG Cong1,2, GUO Nai-sheng1,2, ZHAO Ying-hua1,2, TAN Yi-qiu3   

  1. 1. Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China;
    2. Key Laboratory of Highway Engineering of Liaoning Province, Dalian 116026, China;
    3. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
  • Received:2012-09-13 Online:2014-01-01 Published:2014-01-01

Abstract:

The air voids distribution of three gradations of aggregate is characterized using X-ray computed technology and digital image processing technology. Furthermore, a mathematic model is proposed to describe the air void distribution inside the asphalt mixtures by means of statistical analysis. The results show that both the gradations of aggregate and compaction methods have considerable influence on the air voids distribution within the specimens. Results also show that the voids distribution is symmetric along the depth of the Marshall specimens, whereby, the air voids distribution in the statically compacted specimens in nonsymmetrical along the depth that the number of air voids on the top part of the specimen is bigger than that at the bottom part. There is little difference between the target void fraction and the mean void fraction of the Marshall specimens; while the mean void fraction of the static compaction specimens is over 1.4 times of the target void fraction. In comparison with the Marshall specimens in uniform gradation of aggregate, in the statically compacted specimens, the number of air voids is bigger and the fluctuation along the depth is more remarkable, but the void size is almost consistent. Sstatistical analysis validates the applicability of the two parameter mathematical model to characterize air void distribution in asphalt mixture, and to quantify the effects of compaction methods and gradation of aggregate on air voids.

Key words: road engineering, asphalt mixture, air voids, X-ray CT, compaction method

CLC Number: 

  • U414.103

[1] Masad E, Jandhyala V K, Dasgupta N, et al. Characterization of air void distribution in asphalt mixes using X-ray computed tomography[J]. Journal of Materials in Civil Engineering, 2002, 14(2): 122-129.

[2] Masad E, Muhunthan B. Internal structure characterization of asphalt concrete using image analysis[J]. Journal of Computing in Civil Engineering, 1999, 13(2): 88-95.

[3] Wang L B, Frost J, Mohammad L, et al. Three-dimensional aggregate evaluation using X-ray tomography imaging[C]//The 81st Annual Meeting of Transportation Research Board, Washington D C, 2002:1-22.

[4] You Z P. Development of a micromechanical modeling approach to predict asphalt mixture stiffness using the discrete element method[D]. Urbana-Champaign: University of Illinois, 2003.

[5] Arambula E, Masad E, Martin A E. Influence of air void distribution on the moisture susceptibility of asphalt mixes[J]. Journal of Materials in Civil Engineering, 2007, 19(8): 655-664.

[6] 裴建中, 张嘉林. 矿料级配对多孔沥青混合料空隙分布特征的影响[J]. 中国公路学报, 2010, 23(1):1-6. Pei Jian-zhong, Zhang Jia-lin. Influence of mineral aggregate gradation on air void distribution characteristic of porous asphalt mixture[J]. China Journal of Highway and Transport, 2010, 23(1): 1-6.

[7] 李芬, 沈成武. 基于CT图像的沥青混合料分形特征的研究[J]. 华中科技大学学报:城市科学版, 2006, 23(2):35-37. Li Fen, Shen Cheng-wu. Study on fractal characteristics of asphalt mixture based on CT image[J]. Journal of Huazhong University of Science and Technology(Urban Science Edition), 2006, 23(2): 35-37.

[8] 汪海年, 郝培文. 沥青混合料微细观结构的研究进展[J]. 长安大学学报:自然科学版, 2008, 28(3):11-15. Wang Hai-nian, Hao Pei-wen. Advances in microstructure study on asphalt mixture[J]. Journal of Chang'an University(Natural Science Edition), 2008, 28(3):11-15.

[9] 李晓军. 沥青混合料破损识别与仿真[D]. 广州:华南理工大学, 2004. Li Xiao-jun. Damage identification and simulation of asphalt mixture[D]. Guangzhou: South China University of Technology, 2004.

[10] 李晓军, 张肖宁. CT技术在沥青胶结颗粒材料内部结构分析中的应用[J]. 公路交通科技, 2005, 22(2):14-16. Li Xiao-jun, Zhang Xiao-ning. Application of X-ray computerized tomography in analysis of inner structure of asphalt mix[J]. Journal of Highway and Transportation Research and Development, 2005, 22(2): 14-16.

[11] Masad E, Tashman L, Somedavan N, et al. Micromechanics based analysis of stiffness anisotropy in asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2002, 14(5): 374-383.

[12] Masad E, Button J W. Unified imaging approach for measuring aggregate angularity and texture[J]. Computer Aided Civil and Infrastructure Engineering, 2000, 15(4): 273-280.

[1] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[2] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[3] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[4] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[5] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[6] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[7] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[8] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[9] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[10] NI Ying-sheng, MA Ye, XU Dong, LI Jin-kai. Space mesh analysis method for shear lag effect of cable-stayed bridge with corrugated steel webs [J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[11] ZHENG Chuan-feng, MA Zhuang, GUO Xue-dong, ZHANG Ting, LYU Dan, Qin Yong. Coupling effect of the macro and micro characteristics of mineral powder on the low-temperature performance of asphalt mortar [J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[12] YU Tian-lai, ZHENG Bin-shuang, LI Hai-sheng, TANG Ze-rui, ZHAO Yun-peng. Analyses of defects and causes of steel-plastic compound reinforced retaining wall [J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[13] CAI Yang, FU Wei, TAO Ze-feng, CHEN Kang-wei. Influence analysis of geotextile on reducing traffic induced reflective cracking using extended finite element model [J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[14] LIU Han-bing, ZHANG Hu-zhu, WANG Jing. Effect of dehydration on shear strength properties of compacted clayey soil [J]. 吉林大学学报(工学版), 2017, 47(2): 446-451.
[15] CUI Ya-nan, HAN Ji-wei, FENG Lei, LI Jia-di, WANG Le. Microstructure of asphalt under salt freezing cycles [J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!