吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1182-1190.doi: 10.13229/j.cnki.jdxbgxb201404043

Previous Articles     Next Articles

Weak periodic signal detection based on dissipative coupling synchronization and noise impact analysis

XING Hong-yan1, 2, 3, GONG Ping1, 2, 3, XU Wei1, 2, 3   

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, University of Information Science and Technology, Nanjing 210044, China;
    2.Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    3.College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2013-01-14 Online:2014-07-01 Published:2014-07-01

Abstract: Based on the chaos forecasting model, a dissipative coupling detection method is proposed for detecting weak signal in chaotic background. The Radial Basis Function Neural Network (RBFNN) is applied to fit the chaos forecasting model. The synchronization between chaotic time series and chaos system is realized by combination of RBFNN and dissipative coupling. Then the synchronization error is used to detect the weak signal. The Rossler chaos system is taken as the object to test the feasibility of the proposed method and analyze its performance with weak signals of different frequencies. In order to avoid the mixed impact of noise and chaos time series to the performance of the method, the interference of noise intensity on weak signal detection is investigated in depth. Simulation results show that the proposed method can detect weak signal with different frequencies; under certain conditions, the method can detect weak periodic signal if the Signal-to-Clutter Ratio is bigger than -110 dB. The noise influence on the detection performance can be ignored if the Signal-to-Noise Ratio (SNR) ≥ 0 dB. On the basis of theoretical study, a new type chaotic evolution control experiment instrument MKS-CEC-Ⅲ is applied to produce practical Coullet chaotic time series and add weak signals with different frequencies into time series respectively. This method is used to detect the weak signal from the mixed signal. It is demonstrated that the method can detect added frequency signal from chaotic background and it can also be applied to other chaotic systems.

Key words: communication, chaos, dissipative coupling chaos synchronization, weak signal detection, radial basis function neural network

CLC Number: 

  • TN911.23
[1] Holger K, Thomas S.Nonlinear Time Series Analysis[M].London:Cambridge University Press, 1997.
[2] Matthew B K, Brown R, Henry D I A. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6): 3403-3411.
[3] Cao L Y. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1-2):43-50.
[4] Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length[J]. Physica D: Nonlinear Phenomena, 1996, 95(1):13-28.
[5] Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134-1140.
[6] Haykin S, Li X B.Detection of signals in chaos[J].Proc of IEEE, 1995, 83(1):95-122.
[7] 陈瑛, 罗鹏飞.海杂波背景下基于RBF神经网络的目标检测[J].雷达科学与技术, 2005, 3(5):271-275. Cheng Ying, Luo Peng-fei. Target detection in sea clutter based on RBF neural network[J]. Radar Science and Technology, 2005, 3(5): 271-275.
[8] Hennessey G, Leung H, Drosopoulos A, et al. Sea-clutter modeling using a radial-basis-function neural network[J]. IEEE on Oceanic Engineering, 2001, 26(3):358-372.
[9] 行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测[J]. 物理学报, 2010, 59(1):140-146. Xing Hong-yan, Jin Tian-li. Weak signal estimation in chaotic clutter using wavelet analysis and symmetric LS-SVM regression[J]. Acta Physica Sinica, 2010, 59(1):140-146.
[10] Zhou C T, Teo K B, Chew L Y. Detection of signals from noisy chaotic interference[J]. Physica Scripta, 2002, 65(6):469-475.
[11] Kurian A P, Leung H. Model based synchronization for weak signal detection[C]∥IEEE International Instrumentation and Measurement Technology Conference, Vancouver Island, 2008:1219-1222.
[12] Kurian A P, Leung H. Weak signal estimation in chaotic clutter using model-based coupled synchronization[J]. IEEE Transactions on Circuits and Systems, 2009, 56 (4):820-828.
[13] He D, Leung H. CFAR detection of weak target in clutter using chaos synchronization[J]. Interna- tional Journal of Circuit Theory and Applications, 2007, 36(8):899-921.
[14] Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8):821-824.
[15] 王茂林, 刘少伟, 孙晓东. 复杂噪声背景下正弦频率估计新方法[J]. 吉林大学学报:工学版, 2009, 39(2):371-375. Wang Mao-lin, Liu Shao-wei, Sun Xiao-dong. New frequency estimation method for sinusoidal signal submerged in complicated noise[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(2):371-375.
[16] 孙晓东, 石要武, 于晓辉. 混沌干扰背景下的正弦频率估计新方法[J]. 吉林大学学报:工学版, 2009, 39(5):1353-1357. Sun Xiao-dong, Shi Yao-wu, Yu Xiao-hui. New frequency estimation method for sinusoidal signal submerged in strong chaotic background[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(5):1353-1357.
[17] Parlitz U. Estimating model parameters from time series by autosynchronization[J]. Physical Review Letters, 1996, 76(8):1232-1235.
[18] Konnur R. Estimation of all model parameters of chaotic systems from discrete scalar time series measurements[J]. Physics Letters A, 2005, 346 (4):275-280.
[19] Brown R, Rulkov N F, Tracy E R. Modeling and synchronizing chaotic systems from time-series data[J]. Physical Review E, 1994, 49(5): 3784-3800.
[20] Voss H U. Synchronization of reconstructed dynamical systems[J]. Chaos, 2003, 13(1): 327-334.
[21] 张袅娜, 周邃, 张德江. 基于主动控制的异结构混沌系统有限时间同步[J]. 吉林大学学报:工学版, 2011, 41(4):1131-1134. Zhang Niao-na, Zhou Sui, Zhang De-jiang. Synchronization control of finite time conver- gence between two different structure chaos systems[J]. Journal of Jilin University (Engineer- ing and Technology Edition), 2011, 41(4):1131- 1134.
[22] 黄报星. Lorenz系统的混沌同步与保密通信[J]. 吉林大学学报:工学版, 2003, 33(3):60-63. Huang Bao-xing. Chaotic synchronization of Lorenz systems and secure communication[J]. Journal of Jilin University (Engineering and Technology Edition), 2003, 33(3):60-63.
[23] 秦洁, 于洪洁. 超混沌Rossler系统构成的星形网络的混沌同步[J]. 物理学报, 2007, 56(12): 6828-6835. Qin Jie, Yu Hong-jie. Synchronization of starnetwork of hyperchaotic Rossler systems[J]. Acta Physica Sinica, 2007, 56(12):6828-6835.
[24] Zhu X, Chen Z, Gao Z, et. al. Experimental research and verification for Coullet chaos system[C]∥The Sixth International Conference on Natural Computation, Yantai, 2010: 3040-3044.
[1] CHEN Yong-heng,LIU Fang-hong,CAO Ning-bo. Analysis of conflict factors between pedestrians and channelized right turn vehicles at signalized intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1669-1676.
[2] CHANG Shan,SONG Rui,HE Shi-wei,LI Hao-dong,YIN Wei-chuan. Recycling model of faulty bike sharing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1677-1684.
[3] QU Da-yi,YANG Jing-ru,BING Qi-chun,WANG Wu-lin,ZHOU Jing-chun. Arterial traffic offset optimization based on queue characteristics at adjacent intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1685-1693.
[4] ZHOU Yan-guo,ZHANG Hai-lin,CHEN Rui-rui,ZHOU Tao. Two-level game approach based resource allocation scheme in cooperative networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1879-1886.
[5] LIU Xiang-yu, YANG Qing-fang, KUI Hai-lin. Traffic guidance cell division based on random walk algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1380-1386.
[6] LIU Zhao-hui, WANG Chao, LYU Wen-hong, GUAN Xin. Identification of data characteristics of vehicle running status parameters by nonlinear dynamic analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1405-1410.
[7] LUAN Xin, DENG Wei, CHENG Lin, CHEN Xin-yuan. Mixed Logit model for understanding travel mode choice behavior of megalopolitan residents [J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[8] SUN Xiao-ying, HU Ze-zheng, YANG Jin-peng. Assessment method of electromagnetic pulse sensitivity of vehicle engine system based on hierarchical Bayesian networks [J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[9] DONG Ying, CUI Meng-yao, WU Hao, WANG Yu-hou. Clustering wireless rechargeable sensor networks charging schedule based on energy prediction [J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[10] MOU Zong-lei, SONG Ping, ZHAI Ya-yu, CHEN Xiao-xiao. High accuracy measurement method for synchronous triggering pulse transmission delay in distributed test system [J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[11] DING Ning, CHANG Yu-chun, ZHAO Jian-bo, WANG Chao, YANG Xiao-tian. High-speed CMOS image sensor data acquisition system based on USB 3.0 [J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[12] CHEN Yong-heng, LIU Xin-shan, XIONG Shuai, WANG Kun-wei, SHEN Yao, YANG Shao-hui. Variable speed limit control under snow and ice conditions for urban expressway in junction bottleneck area [J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[13] WANG Zhan-zhong, LU Yue, LIU Xiao-feng, ZHAO Li-ying. Improved harmony search algorithm on truck scheduling for cross docking system [J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[14] LI Zhi-hui, HU Yong-li, ZHAO Yong-hua, MA Jia-lei, LI Hai-tao, ZHONG Tao, YANG Shao-hui. Locating moving pedestrian from running vehicle [J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[15] CHEN Song, LI Xian-sheng, REN Yuan-yuan. Adaptive signal control method for intersection with hook-turn buses [J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!