吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1881-1891.doi: 10.13229/j.cnki.jdxbgxb201606017

Previous Articles     Next Articles

Progress in basic research of turbulent spray lifted flame based on controllable active thermo-atmosphere combustor

WU Zhi-jun, ZHAO Wen-bo, ZHANG Qing   

  1. School of Automotive Studies, Tongji University, Shanghai 201804, China
  • Received:2016-07-01 Online:2016-11-20 Published:2016-11-20

Abstract:

The structure, main features and functions of active thermo-atmosphere combustor are described. Then, the main topics and achievements in the research of turbulent spray auto-ignition and flame stabilization are reviewed. The studies on this type of active thermo-atmosphere combustors are classified according to the fuel characteristics. The research advantages and features of controllable active thermo-atmosphere combustor are analyzed. The directions for future research of such combustor are predicted.

Key words: engineering thermo physics, controllable active thermo-atmosphere, turbulent jet flame, combustion stability

CLC Number: 

  • TK121
[1] Schlichting H, Gersten K. Boundary Layer Theory[DB/OL]. [2016-06-20].https://www.doc88.com/p-9109559075001.html.
[2] Hinze J O. Turbulence[M]. New York: McGraw-Hill,1975.
[3] Vanquickenborne L, van Tiggelen A. The stabilization mechanism of lifted diffusion flames[J]. Combustion and Flame,1966,10(1):59-69.
[4] Schefer R W, Goix P J. Mechanism of flame stabilization in turbulent, lifted-jet flames[J]. Combustion and Flame,1998,112(4):559-574.
[5] Mastorakos E, Baritaud T A, Poinsot T J. Numerical simulations of autoignition in turbulent mixing flows[J]. Combustion and Flame,1997,109(1):198-223.
[6] Mastorakos E, Bilger R W. Second-order conditional moment closure for the autoignition of turbulent flows[J]. Physics of Fluids,1998,10(10):1246-1248.
[7] Bilger R W. Turbulent jet diffusion flames[J]. Energy Combus Sci,1976,1(2):87-109.
[8] Brown C D, Watson K A, Lyons K M. Studies on lifted jet flames in coflow: the stabilization mechanism in the near-and far-fields[J]. Flow, Turbulence and Combustion,1999,62(3):249-273.
[9] 吴志军,邓俊,冯威,等. 可控活化热氛围下喷射燃料自燃的研究方法[J]. 吉林大学学报:工学版,2006,36(1):36-41.
Wu Zhi-jun,Deng Jun,Feng Wei,et al. Research method for autoignition of fuel jet in controllable active thermo-atmosphere[J]. Journal of Jilin University(Engineering and Technology Edition), 2006, 36(1):36-41.
[10] Cabra R, Myhrvold T, Chen J Y, et al. Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H 2 /N 2 jet flame in a vitiated coflow[J]. Proceedings of the Combustion Institute,2002,29(2):1881-1888.
[11] Wu Z, Starner S H, Bilger R W. Lift-off heights of turbulent H2/N2 jet flames in a vitiated co-flow[C]∥Proceedings of the 2003 Australian Symposium on Combustion and the 8th Australian Flame Days,Australia,2003.
[12] Barlow R S, Pope S B, Masri A R, et al. Sixth international workshop on measurement computation of turbulent non-premixed flames[C]∥Proceedings of Sixth International Workshop on Measurement and Computation of Turbulent Non premixed Flames,Sapporo, Japan, 2002.
[13] 邓俊,吴志军,李理光,等. 可控活化热氛围燃烧试验系统的研发[J]. 吉林大学学报:工学版,2007,37(2):307-312.
Deng Jun,Wu Zhi-jun,Li Li-guang, et al. Development of experimental system of novel controllable active thermo-atmosphere combustor[J]. Journal of Jilin University(Engineering and Technology Edition),2007,37(2):307-312.
[14] 吴志军,邓俊,李理光. 可控活化热氛围燃烧器非标协流特性的试验研究[J]. 科学通报,2005,50(7):721-724.
Wu Zhi-jun, Deng Jun, Li Li-guang. Study on characteristics of controllable active thermo-atmosphere of a vitiated coflow combustor[J]. Chinese Science Bulletin,2005,50(7):721-724.
[15] Wang H, You X, Joshi A V, et al. USC Mech Version II. High-temperature combustion reaction model of H 2 /CO/C 1 -C 4 Compounds[DB/OL]. [2016-06-25].https://ignis.usc.edu/USC_Mech_II.htm.
[16] Smith G P, Golden D M, Frenklach M, et al. GRI-Mech 3.0[DB/OL]. [2016-06-25]. http://combustion.berkeley.edu/gri-mech/.
[17] Tacke M M, Geyer D, Hassel E P, et al. A detailed investigation of the stabilization point of lifted turbulent diffusion flames[J]. Symposium on Combustion,1998,27(1):1157-1165.
[18] Brown C D, Watson K A, Lyons K M. Studies on lifted jet flames in coflow: the stabilization mechanism in the near-and far-fields[J]. Flow, Turbulence and Combustion,1999,62(3):249-273.
[19] Cabra R, Hamano Y, Chen J Y, et al. Enaemble diffraction measurements of spray combustion in a novel vitiated coflow turbulent jet flame burner[R]. Golden:Spring Meeting of theWestern States Section of the Combustion Institute, 2000.
[20] Smith L L, Dibble R W, Talbot L, et al. Laser Raman scattering measurements of differential molecular diffusion in turbulent nonpremixed jet flames of H 2 /CO 2 fuel[J]. Combustion and Flame,1995,100(1/2):153-160.
[21] Mastorakos E, Markides C, Wright Y M. Hydrogen autoignition in a turbulent duct flow: experiments and modelling[C]∥The 12th International Conference on Fluid Flow Technologies,Budapest,2003:56-62.
[22] Cabra R, Chen J Y, Dibble R W, et al. Lifted methane-air jet flames in a vitiated coflow[J]. Combustion & Flame,2005,143(4):491-506.
[23] Cao R R, Pope S B, Masri A R. Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations[J]. Combustion and Flame,2005,142(4):438-453.
[24] Gordon R L, Starner S H, Masri A R, et al. Further characterisation of lifted hydrogen and methane flames issuing into a vitiated coflow[C]∥Proceedings of the 5th Asia-Pacific Conference on Combustion, Adelaide, Australia,2005:333-336.
[25] Wu Z, Masri A R, Bilger R W. An experimental investigation of the turbulence structure of a lifted H 2 /N 2 jet flame in a vitiated co-flow[J]. Flow, Turbulence and Combustion,2006,76(1):61-81.
[26] Patwardhan S S, De S, Lakshmisha K N, et al. CMC simulations of lifted turbulent jet flame in a vitiated coflow[J]. Proceedings of the Combustion Institute,2009,32(2): 1705-1712.
[27] Klimenko A Y. Multicomponent diffusion of various admixtures in turbulent flow[J]. Fluid Dynamics,1990,25(3):327-334.
[28] Bilger R W. Conditional moment closure for turbulent reacting flow[J]. Physics of Fluids A,1993,5(2):436-444.
[29] Navarro-Martinez S, Rigopoulos S. Large eddy simulation of a turbulent lifted flame using conditional moment closure and rate-controlled constrained equilibrium[J]. Flow, Turbulence and Combustion,2011,87(2/3):407-423.
[30] Stankovi c ' I, Merci B. Analysis of auto-ignition of heated hydrogen-air mixtures with different detailed reaction mechanisms[J]. Combustion Theory and Modelling,2011,15(3): 409-436.
[31] Johannessen B, North A, Dibble R, et al. Experimental studies of autoignition events in unsteady hydrogen-air flames[J]. Combustion & Flame,2015,162(9):3210-3219.
[32] Cabra R, Dibble R W, Chen J Y. Characterization of liquid fuel evaporation of a lifted methanol spray flame in a vitiated coflow burner[DB/OL].[2016-06-26]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030014738.pdf.
[33] 邓俊,吴志军,黄成杰,等. 活化热氛围下柴油喷雾多点自燃特性及影响因素的实验研究[J]. 科学通报,2006,51(22):2699-2704.
Deng Jun, Wu Zhi-jun, Huang Cheng-jie, et al. Experimental study on multi-point autoignition characteristics and influence factors of diesel spray in a controllable active thermo-atmosphere[J]. Chinese Science Bulletin,2006,51(22):2699-2704.
[34] 张旭升, 李理光, 邓俊,等. 生物柴油喷雾特性的试验研究[J]. 内燃机学报, 2007,25(2):172-176.
Zhang Xu-sheng,Li Li-guang,Deng Jun,et al.An experimental study of bio-diesel spray characteristics[J]. Transactions of Csice,2007,25(2):172-176.
[35] 包堂堂,邓俊,吴志军. 临界温度区域内柴油喷雾燃烧特性模拟[J]. 同济大学学报:自然科学版,2013,41(8):1255-1262.
Bao Tang-tang,Deng Jun, Wu Zhi-jun. Numerical study on combustion characteristics of diesel spray crossing critical temperature range[J]. Journal of Tongji University(Natural Science),2013,41(8):1255-1262.
[36] 龚慧峰,胡宗杰,张青,等. 可控热氛围下正庚烷液滴流燃烧火焰特性研究[J]. 工程热物理学报, 2016,37(5):1134-1140.
Gong Hui-Feng, Hu Zong-Jie, Zhang Qing,et al. Flame characteristics of n -Heptane droplet streams in a controllable active thermo-atmosphere[J]. Journal of Engineering Thermophysics,2016,37(5):1134-1140.
[37] 贺孝愚,童孙禹,宛昕,等. 活化热氛围下润滑油自燃特性研究[J]. 润滑油,2016,31(1):59-64.
He Xiao-yu,Tong Sun-yu, Wan Xin, et al. Research on the auto-ignition characteristics of lubricant in controllable active thermo-atmosphere[J]. Lubricating Oil,2016,31(1):59-64.
[38] 张旭升,李理光,吴志军,等. 可控活化热氛围中不同混合比生物柴油的燃烧特性[J]. 燃烧科学与技术,2008,14(2):127-131.
Zhang Xu-sheng,Li Li-guang, Wu Zhi-jun, et al. Characteristics of the biodiesel combustion in a controllable active thermo-atmosphere[J]. Journal of Combustion Science and Technology,2008,14(2):127-131.
[39] Wu Zhi-jun, Bao Tang-tang, Zhang Qing, et al. Experimental study on spray combustion characteristics of gasoline-diesel blended fuel in a controllable active thermo-atmosphere[J]. Fuel, 2014,135:374-379.
[40] Wu Zhi-jun, Bao Tang-tang, Zhang Qing, et al. Simulation study on spray combustion mechanism of diesel-gasoline blend fuels[J]. Fuel,2015,143:301-307.
[41] 包堂堂,胡宗杰,胡俊超,等. 基于超声雾化的柴油/汽油混合燃料液滴群燃烧特性[J]. 吉林大学学报:工学版,2013,43(4):903-908.
Bao Tang-tang, Hu Zong-jie, Hu Jun-chao, et al. Combustion characteristics of diesel-gasoline blend fuel based on ultrasonic atomization technology[J]. Journal of Jilin University(Engineering and Technology Edition),2013,43(4):903-908.
[42] 张青,吴志军,赵文伯,等. 可控热氛围下丙烷柴油混合燃料喷雾特性试验研究[J]. 工程热物理学报,2015,33(9):2050-2054.
Zhang Qing, Wu Zhi-jun,Zhao Wen-bo, et al. Experimental study on spray characteristics of diesel-propane blend fuel in a controllable active thermo-atmosphere[J]. Journal of Engineering Thermophysics,2015,33(9):2050-2054.
[43] 包堂堂,张青,严术斌,等. 可控热氛围下柴油/丙烷混合燃料低压喷雾及自燃特性试验[J]. 内燃机学报,2014,32(4):309-315.
Bao Tang-tang, Zhang Qing, Yan Shu-bin, et al. Experiment on low pressure spray and auto-ignition characteristics of diesel-propane blends in controllable active thermo-atmosphere[J]. Transactions of Csice,2014,32(4):309-315.
[1] GU Yan-hua,GUO Ying-nan, LIU Fa-fa, PENG Ya-ping, LIANG Xiao-ming . Effect of spark ignition on homogeneous charge compression
ignition combustion stability of ethanol
[J]. 吉林大学学报(工学版), 2008, 38(04): 782-785.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] ZHU Jian-feng, LIN Yi, CHEN Xiao-kai, SHI Guo-biao. Structural topology optimization based design of automotive transmission housing structure[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .