吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 1191-1198.doi: 10.13229/j.cnki.jdxbgxb20170359

Previous Articles     Next Articles

Identification of non-axisymmetric ultrasonic standing wave field using laser Doppler vibrometer

DONG Hui-juan, YU Zhen, FAN Ji-zhuang   

  1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
  • Received:2017-04-26 Online:2018-07-01 Published:2018-07-01

Abstract: Measuring the acoustic pressure of standing wave is the basis of acoustic levitation. The non-axisymmetric acoustic field within the resonance cavity is analyzed. Firstly, the acoustic pressure distribution on the typical cross-section of the acoustic field in the third levitation mode is obtained by COMSOL simulation. The simulated acoustic pressure is Radon transformed to obtain the simulated LDV velocity output, which is compared with the experiment results to verify the relationship between LDV velocity output and acoustic pressure distribution. Then, based on Filer Back Projection (FBP) algorithm, a self-written MATLAB code is used to reconstruct the LDV velocity output in the experiment and obtain the acoustic pressure distribution of the cross-section, which is compared with the COMSOL simulation results. The identification effect of the non-axisymmetric standing wave acoustic filed is verified.

Key words: technology of automatic control, ultrasonic standing wave, resonance cavity, acoustic field identification, LDV velocity output, Radon transform, filtered back projection (FBP) algorithm

CLC Number: 

  • TD24
[1] 沈昌乐,解文军,洪振宇,等. 声悬浮技术的发展及应用[J]. 现代物理知识,2010,22(3):10-13.
[2] Pérez N,Andrade M A,Canetti R,et al.Experimental determination of the dynamics of an acoustically levitated sphere[J]. Journal of Applied Physics, 2014, 116(18): 184903.
[3] Olive J R,Hofmeister W H,Bayuzick R J,et al.Formation of tetragonal YBa2Cu3O7 δ from an undercooled melt[J]. Journal of Materials Research,1993,9(1):1-3.
[4] Bauerecker S,Neidhart B.Formation and growth of ice particles in stationary ultrasonic fields[J]. Journal of Chemical Physics,1998,109(10):3709-3712.
[5] Ohsaka K,Trinh E H,Glicksman M E.Undercooling of acoustically levitated molten drops[J]. Journal of Crystal Growth,1990,106(2/3):191-196.
[6] Gao J R,Cao C D,Wei B.Containerless processing of materials by acoustic levitation[J]. Advances in Space Research,1999,24(10):1293-1297.
[7] Santesson S,Andersson M,Degerman E,et al.Airborne cell analysis[J]. Analytical Chemistry,2000,72(15):3412-3419.
[8] Sundvik M,Nieminen H J,Salmi A,et al.Effects of acoustic levitation on the development of zebrafish,Danio rerio,embryos[J]. Journal of Symplectic Geometry,2015, 3(1):17-54.
[9] Wang H,Mu S,Zhang F,et al.Effects of atrazine on the development of neural system of zebrafish,danio rerio[J]. Biomed Research International, 2015, 2015(3):1-10.
[10] Vasileiou T,Foresti D,Bayram A,et al.Toward contactless biology: acoustophoretic DNA transfection[J]. Scientific Reports, 2016, 6:20023.
[11] Zang D,Chen Z,Geng X,et al.Sectorial oscillation of acoustically levitated nanoparticle-coated droplet[J]. Applied Physics Letters,2016,108(3):3164.
[12] Cao H L,Yin D C,Guo Y Z,et al.Rapid crystallization from acoustically levitated droplets[J]. Journal of the Acoustical Society of America,2012,131(4):3164-3172.
[13] Kozuka T,Tuziuti T,Mitome H,et al.Control of a standing wave field using a line-focused transducer for two-dimensional manipulation of particles[J]. Japanese Journal of Applied Physics,1998,37(5S):2974-2978.
[14] Foresti D,Nabavi M,Poulikakos D.Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulatora[J]. Journal of the Acoustical Society of America,2012,131(2):1029-1038.
[15] Koyama D,Nakamura K.Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2010,57(5):1152-1159.
[16] Koyama D,Nakamura K.Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2010,57(6):1434-1442.
[17] Foresti D,Nabavi M,Klingauf M,et al.Acoustophoretic contactless transport and handling of matter in air[J]. Proceedings of the National Academy of Science,2013,110(31):12549-12554.
[18] Foresti D,Sambatakakis G,Bottan S,et al.Morphing surfaces enable acoustophoretic contactless transport of ultrahigh-density matter in air[J]. Scientific Reports,2013,3(11):3176.
[19] Embleton T F W. The propagation and reflection of sound pulses of finite amplitude[J]. Proceedings of the Physical Society,1956,69(3):382-395.
[20] Gor'kov L P.On the forces acting on a small particle in an acoustical field in an ideal fluid[J]. Sov Phys-Dokl,1962,6(1):773.
[21] Andrade M A B,Ramos T S,Okina F T A,et al. Nonlinear characterization of a single-axis acoustic levitator[J]. Review of Scientific Instruments,2014,85(4): 045125.
[22] Baucom J,Merrill M,Field C R,et al.Effect of placing a probe in an acoustic drop levitator[J]. Journal of Vibration & Acoustics,2015,4(2):116-117.
[23] Bahr L,Lerch R.Beam profile measurements using light refractive tomography[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2008,55(55):405-414.
[24] Chen L,Rupitsch S J,Lerch R.Non-perturbing measurement of sound pressure fields by means of laser Doppler vibrometer[C]∥IEEE Ultrasonics Symposium,2011:1095-1098.
[25] Nakamura K.Sound feild measurement through the acousto-optic effect of air by using laser Dopplerl Velocimenter[C]∥Proceedings of the 4th Pacific RIM Conference on Lasers and Electro-Optics,2001.
[26] Andrade M A,Ramos T S,Okina F T,et al.Nonlinear characterization of a single-axis acoustic levitator[J]. Review of Scientific Instruments,2014,85(4):045125.
[27] Andrade M A,Pérez N,Adamowski J C.Experimental study of the oscillation of spheres in an acoustic levitator[J]. Journal of the Acoustical Society of America,2014, 136(4):1518-1546.
[28] Bracewell R N.The Fourier Transform and its Applications[M]. 3rd ed. New York: McGraw-Hill,2000.
[29] Kak A C, Slaney M.Principles of Computerized Tomographic Imaging[M]. New York: IEEE Press,1988.
[1] LI Yi-bing, FU Qiang, ZHANG Jing. Underwater blurred image restoration based on parameter estimation [J]. 吉林大学学报(工学版), 2013, 43(04): 1133-1138.
[2] BEN Xian-ye, XU Sen, WANG Ke-jun. Gait recognition based on Trace transform [J]. 吉林大学学报(工学版), 2012, 42(01): 156-160.
[3] LI Li, Qu Zhen-shen, ZENG Qing-shuang . Extended difference function and its application in image motion estimation
[J]. 吉林大学学报(工学版), 2008, 38(04): 897-901.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guo Kong-hui;Wang Shuang;Ding Hai-tao;Zhang Jian-wei . Elastic coupling characteristic of unsymmetrical rubber bushings of rear suspension[J]. 吉林大学学报(工学版), 2007, 37(06): 1225 -1228 .
[2] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[3] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[4] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[5] ZHU Jian-feng, LIN Yi, CHEN Xiao-kai, SHI Guo-biao. Structural topology optimization based design of automotive transmission housing structure[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[6] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[7] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[8] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[9] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[10] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .