吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 319-329.doi: 10.13229/j.cnki.jdxbgxb20161120

• Orginal Article • Previous Articles     Next Articles

Deep attribute learning based traffic sign detection

WANG Fang-shi1, WANG Jian1, LI Bing2, 3, WANG Bo2, 3   

  1. 1.School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;
    3.National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2016-10-14 Online:2018-02-26 Published:2018-02-26

Abstract: A traffic sign detection method based on deep attribute learning was proposed. To make up the gap between raw image and high level semantics, three visual attributes, including shape, color and pattern, were introduced. Attribute learning was added to train Convolutional Neural Network (CNN), where attribute learning and classification learning were carried out simultaneously. Experimental results on datasets Sweden Traffic Sign Detection Dataset (STSD) and German Traffic Sign Detection Dataset (GTSD) show that the proposed method can effectively improve the precision and recall in terms of traffic sign detection.

Key words: information processing technology, traffic sign detection, deep attribute learning, convolutional neural network(CNN)

CLC Number: 

  • TN911.73
[1] Salti S, Petrelli A, Tombari F, et al.Traffic sign detection via interest region extraction[J]. Pattern Recognition, 2015, 48(4): 1039-1049.
[2] Gómez-Moreno H, Maldonado-Bascón S, Gil-Jiménez P, et al.Goal evaluation of segmentation algorithms for traffic sign recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 917-930.
[3] Shadeed W G,Abu-Al-Nadi D I,Mismar M J. Road traffic sign detection in color images[C]∥IEEE International Conference on Electronics, Circuits and Systems, Sharjah, United Arab Emirates, 2003:890-893.
[4] Ruta A, Li Y, Liu X.Real-time traffic sign recognition from video by class-specific discriminative features[J]. Pattern Recognition, 2010, 43(1):416-430.
[5] Li H, Sun F,Liu L, et al.A novel traffic sign detection method via color segmentation and robust shape matching[J]. Neurocomputing, 2015, 169: 77-88.
[6] Loy G, Barnes N.Fast shape-based road sign detection for a driver assistance system[C]∥IEEE International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004:70-75.
[7] Barnes N, Zelinsky A, Fletcher L S.Real-time speed sign detection using the radial symmetry detector[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2):322-332.
[8] Chen T, Lu S.Accurate and efficient traffic sign detection using discriminative adaboost and support vector regression[J]. IEEE Transactions on Vehicular Technology, 2015, 65(6): 4006-4015.
[9] Wu Y, Liu Y, Li J, et al.Traffic sign detection based on convolutional neural networks[C]∥IEEE International Joint Conference on Neural Networks, Dallas, TX, USA, 2013:1-7.
[10] Qian R, Zhang B, Yue Y, et al.Robust Chinese traffic sign detection and recognition with deep convolutional neural network[C]∥IEEE International Conference on Natural Computation, Zhangjiajie, China, 2015:791-796.
[11] Zang D, Zhang J, Zhang D, et al.Traffic sign detection based on cascaded convolutional neural networks[C]∥IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Shanghai, China, 2016:201-206.
[12] Farhadi A, Endres I, Hoiem D, et al.Describing objects by their attributes[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida, USA, 2009: 1778-1785.
[13] Berg T L, Berg A C, Shih J.Automatic attribute discovery and characterization from noisy web data[C]∥European Conference on Computer Vision, Heraklion, Crete, Greece, 2010:663-676.
[14] Matas J, Chum O, Urban M, et al.Robust wide-baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing, 2004, 22(10):761-767.
[15] Krizhevsky A, Sutskever I, Hinton G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012:1097-1105.
[16] Farabet C, Couprie C, Najman L, et al.Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915-1929.
[17] Ciresan D, Giusti A, Gambardella L M, et al.Deep neural networks segment neuronal membranes in electron microscopy images[C]∥Advances in neural information processing systems, Lake Tahoe, Nevada, USA, 2012: 2843-2851.
[18] Sermanet P, Eigen D, Zhang X, et al.Overfeat:integrated recognition, localization and detection using convolutional networks[J].arXiv preprint arXiv:1312.6229, 2013.
[19] Girshick R, Donahue J, Darrell T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014:580-587.
[20] Sharif R A, Azizpour H, Sullivan J, et al.CNN features off-the-shelf: an astounding baseline for recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014:806-813.
[21] Larsson F, Felsberg M.Using Fourier descriptors and spatial models for traffic sign recognition[C]∥Scandinavian Conference on Image Analysis, Ystad, Sweden, 2011: 238-249.
[22] Houben S, Stallkamp J, Salmen J, et al.Detection of traffic signs in real-world images: the German traffic sign detection benchmark[C]∥IEEE International Joint Conference on Neural Networks, Dallas, TX, USA, 2013:1-8.
[23] Uijlings J R R, van de Sande K E A, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
[24] Mathias M, Timofte R, Benenson R, et al.Traffic sign recognition-how far are we from the solution?[C]∥IEEE International Joint Conference on Neural Networks, Dallas, TX, USA, 2013:1-8.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[13] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[14] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
[15] YANG Chao-yu, LI Ce, LIANG Yin-cheng, YANG Feng. Blurred object detection based on improved particle filter in coal mine underground surveilance [J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!