Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1726-1734.doi: 10.13229/j.cnki.jdxbgxb20180366

Previous Articles    

Image super-resolution reconstruction based on residual connection convolutional neural network

Ji-chang GUO(),Jie WU,Chun-le GUO,Ming-hui ZHU   

  1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • Received:2018-04-20 Online:2019-09-01 Published:2019-09-11

Abstract:

Super-resolution reconstruction algorithms based on convolutional neural network are confront the problems of small receptive field, disappearing of gradient information and slow convergence of the network. In order to solve these problems, an image super-resolution reconstruction algorithm based on residual connection convolutional neural network is proposed. Processing images in high resolution space results in the increase in network complexity. So, images are processed in low-resolution space to reduce complexity. The convolutional neural network is improved by introducing local and global residuals. Local residual promotes the flow of information and avoids the problem of gradient disappearing during network training. Due to the local residual connection, image information can be transferred to deeper layers. The global residual makes the network learn the residual information in images only, reducing network redundancy and accelerating network convergence. The receptive field is expanded by increasing the network depth, which makes the network learn more reconstruction information. The PSNR and SSIM of the proposed algorithm are comparable to other algorithms.

Key words: imformation processing technology, image super-resolution, convolution neural network, subpixel upsampling, residual connection

CLC Number: 

  • TP751.1

Fig.1

Framework based on residual neural convolutional network"

Fig.2

Residual unit"

Fig.3

Full view of proposed sub-pixel convolution using just convolution"

Fig.4

Quantitative evaluation (PSNR) on dataset Set5"

Table 1

Comparison of PSNR of this paper with ESPCN"

数据集 ESPCN(91) 本文算法(91)

Set5

Set14

BSD300

BSD500

平均值

32.39

28.97

28.20

28.27

29.46

32.56

29.01

28.31

28.40

29.58

Fig.5

PSNR, complexity vs speed"

Table 2

PSNR of different methods with upscaling factor on datasets Set5"

图像 双三次插值 A+ SRCNN FSRCNN 本文方法
Baby 37.07 38.37 38.36 38.40 38.55
Bird 36.81 41.01 40.46 40.80 41.82

Butterfly

Head

Women

27.43

34.86

32.14

32.02

35.74

35.27

32.14

35.67

34.83

32.64

35.66

35.36

33.72

35.89

35.70

Fig. 6

Result of super resolution on Baboon image with 3 upscaling factor"

Fig. 7

Result of super resolution on Face image with 3 upscaling factor"

Fig.8

Result of super resolution on Foreman image with 3 upscaling factor"

Fig.9

Result of super resolution on Pepper image with 3 upscaling factor"

Table 3

Average PSNR/SSIM for upscaling factors ×2,×3,×4 on datasets Set5, Set14, BSD100 dB/-"

数据库 尺度因子 双三次插值PSNR/SSIM

A+

PSNR/SSIM

SRCNN

PSNR/SSIM

FSRCNN

PSNR/SSIM

本文方法PSNR/SSIM
Set5 ×2 33.66/0.992 36.54/0.954 36.66/0.954 37.00/0.955 37.13/0.956
Set5 ×3 30.39/0.868 32.58/0.908 32.75/0.909 33.16/0.914 33.12/0.912
×4 28.42/0.810 30.28/0.860 30.49/0.862 30.70/0.865 30.74/0.865
Set14 ×2 30.24/0.868 32.28/0.905 32.42/0.906 32.63/0.909 32.72/0.917
×3 27.55/0.774 29.13/0.818 29.28/0.820 29.43/0.824 29.43/0.837
×4 26.00/0.702 27.32/0.749 27.49/0.750 27.59/0.754 27.60/0.772
×2 29.56/0.843 31.21 /0.886 31.36/0.888 31.50/0.891 31.69/0.899
BSD100 ×3 27.21/0.738 28.29/0.784 28.41/0.786 28.52/0.789 28.57/0.793
×4 25.96/0.667 26.82/0.709 26.90/0.710 26.96/0.713 27.07/0.717
平均值 - 28.78/0.807 30.98/0.841 30.64/0.843 31.91/0.873 31.97/0.878
1 Tsai R Y , Huang T S . Multiframe image restoration and registration[J]. Advance Computer Visual and Image Processing, 1984, 1(2): 317-339.
2 Peleg S , Keren D , Schweitzer L . Improving image resolution using subpixel motion[J]. Pattern Recognition Letters, 1987, 5(3): 223-226.
3 Schultz R R , Stevenson R L . Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996, 5(6): 996-1011.
4 Freeman W T , Jones T R , Pasztor E C . Example-based super-resolution[J]. IEEE Computer Graphics & Applications, 2002, 22(2): 56-65.
5 薛翠红, 于明, 杨宇皓, 等 . 基于学习的马尔科夫超分辨率复原[J]. 吉林大学学报: 工学版, 2013, 43(增刊1): 406-409.
Xue Cui-hong , Yu Ming , Yang Yu-hao , et al . MRF reconstruction based on Markov network[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(Sup.1): 406-409.
6 徐岩, 孙美双 . 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报: 工学版, 2018, 48(6): 1895-1903.
Xu Yan , Sun Mei-shuang . Enhancing underwater image based on convolutional neural networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1895-1903.
7 马淼, 李贻斌 . 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报: 工学版, 2017, 47(4): 1244-1252.
Ma Miao , Li Yi-bin . Multi-level image sequences and convolutional neural networks based human action recognition method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1244-1252.
8 Dong C , Chen C L , He K , et al . Learning a deep convolutional network for image super-resolution[C]∥European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 184-199.
9 Dong C , Loy C C , Tang X . Accelerating the super-resolution convolutional neural network[C]∥European Conference on Computer Vision. Amsterdam: Springer International Publishing, 2016: 391-407.
10 Shi W , Caballero J , Huszár F , et al . Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 1874-1883.
11 Kim J , Lee J K , Lee K M . Accurate image super-resolution using very deep convolutional networks[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 1646-1654.
12 Kim J , Kwon Lee J , Mu Lee K . Deeply-recursive convolutional network for image super-resolution[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 1637-1645.
13 Justin J , Alexandre A , Li F F . Perceptual losses for real-time style transfer and super-resolution[C]∥European Conference on Computer Vision. Amsterdam: Springer International Publishing, 2016: 694-711.
14 Ledig C , Wang Z , Shi W , et al . Photo-realistic single image super-resolution using a generative adversarial network[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE Computer Society, 2017: 105-114.
15 Cui Z , Chang H , Shan S , et al . Deep network cascade for image super-resolution[C]∥European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 49-64.
16 Mao X J , Shen C , Yang Y B . Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[J]. Advances in Neural Information Processing Systems, 2016(2): 2810-2818.
17 Wang Y F , Wang L J , Wang H Y , et al . End-to-end image super-resolution via deep and shallow convolutional networks[J]. IEEE Access, 2016(7): 959-970.
18 He K , Zhang X , Ren S , et al . Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 770-778.
19 Nah S , Kim T H , Lee K M . Deep multi-scale convolutional neural network for dynamic scene deblurring[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE Computer Society, 2017: 257-265.
[1] WANG Ke-yan, LI Yun-song, SONG Juan, LIAO Hui-lin, WU Xian-yun. Spatial-spectral lossless compression of hyperspectral images using local edge based prediction [J]. 吉林大学学报(工学版), 2017, 47(2): 677-685.
[2] ZHAO Bo, QIN Gui-he. High robustness image watermarking algorithm [J]. 吉林大学学报(工学版), 2017, 47(1): 249-254.
[3] WANG Jing-meng, ZHANG Ai-wu, ZHAO Ning-ning, MENG Xian-gang. Influence of tilting angle on tilting sampling aliasing and relationship between aliasing and resolution [J]. 吉林大学学报(工学版), 2015, 45(3): 953-960.
[4] XIA Ying-jie, LI Jin-ping, CHEN Rui. Automatic synthetic registration method based on substation multi-modal images [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 47-50.
[5] LI Zhi-min, HOU Yong-hong, WANG Bao-liang, HOU Chun-ping, ZHOU Yuan. Parallax adjustment method for stereoscopic display on mobile phones based on optical-plate [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 304-308.
[6] WANG Yu-lei, ZHAO Chun-hui, QI Bin. Hyperspectral anomaly detection algorithm based on spectral similarity scale [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 148-153.
[7] FANG Ying-ying, TENG Qi-zhi, HE Xiao-hai, YANG Xiao-min, LI Zheng-ji. Analysis for three-dimensional reconstruction technique of sandstone [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 11-15.
[8] QI Bin, ZHAO Chun-hui, WANG Yu-lei. Hyperspectral imagery classification based on SVM and RVM [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 143-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!