Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1726-1734.doi: 10.13229/j.cnki.jdxbgxb20180366
Ji-chang GUO(),Jie WU,Chun-le GUO,Ming-hui ZHU
CLC Number:
1 | Tsai R Y , Huang T S . Multiframe image restoration and registration[J]. Advance Computer Visual and Image Processing, 1984, 1(2): 317-339. |
2 | Peleg S , Keren D , Schweitzer L . Improving image resolution using subpixel motion[J]. Pattern Recognition Letters, 1987, 5(3): 223-226. |
3 | Schultz R R , Stevenson R L . Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996, 5(6): 996-1011. |
4 | Freeman W T , Jones T R , Pasztor E C . Example-based super-resolution[J]. IEEE Computer Graphics & Applications, 2002, 22(2): 56-65. |
5 | 薛翠红, 于明, 杨宇皓, 等 . 基于学习的马尔科夫超分辨率复原[J]. 吉林大学学报: 工学版, 2013, 43(增刊1): 406-409. |
Xue Cui-hong , Yu Ming , Yang Yu-hao , et al . MRF reconstruction based on Markov network[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(Sup.1): 406-409. | |
6 | 徐岩, 孙美双 . 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报: 工学版, 2018, 48(6): 1895-1903. |
Xu Yan , Sun Mei-shuang . Enhancing underwater image based on convolutional neural networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1895-1903. | |
7 | 马淼, 李贻斌 . 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报: 工学版, 2017, 47(4): 1244-1252. |
Ma Miao , Li Yi-bin . Multi-level image sequences and convolutional neural networks based human action recognition method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1244-1252. | |
8 | Dong C , Chen C L , He K , et al . Learning a deep convolutional network for image super-resolution[C]∥European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 184-199. |
9 | Dong C , Loy C C , Tang X . Accelerating the super-resolution convolutional neural network[C]∥European Conference on Computer Vision. Amsterdam: Springer International Publishing, 2016: 391-407. |
10 | Shi W , Caballero J , Huszár F , et al . Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 1874-1883. |
11 | Kim J , Lee J K , Lee K M . Accurate image super-resolution using very deep convolutional networks[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 1646-1654. |
12 | Kim J , Kwon Lee J , Mu Lee K . Deeply-recursive convolutional network for image super-resolution[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 1637-1645. |
13 | Justin J , Alexandre A , Li F F . Perceptual losses for real-time style transfer and super-resolution[C]∥European Conference on Computer Vision. Amsterdam: Springer International Publishing, 2016: 694-711. |
14 | Ledig C , Wang Z , Shi W , et al . Photo-realistic single image super-resolution using a generative adversarial network[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE Computer Society, 2017: 105-114. |
15 | Cui Z , Chang H , Shan S , et al . Deep network cascade for image super-resolution[C]∥European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 49-64. |
16 | Mao X J , Shen C , Yang Y B . Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[J]. Advances in Neural Information Processing Systems, 2016(2): 2810-2818. |
17 | Wang Y F , Wang L J , Wang H Y , et al . End-to-end image super-resolution via deep and shallow convolutional networks[J]. IEEE Access, 2016(7): 959-970. |
18 | He K , Zhang X , Ren S , et al . Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016: 770-778. |
19 | Nah S , Kim T H , Lee K M . Deep multi-scale convolutional neural network for dynamic scene deblurring[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE Computer Society, 2017: 257-265. |
[1] | WANG Ke-yan, LI Yun-song, SONG Juan, LIAO Hui-lin, WU Xian-yun. Spatial-spectral lossless compression of hyperspectral images using local edge based prediction [J]. 吉林大学学报(工学版), 2017, 47(2): 677-685. |
[2] | ZHAO Bo, QIN Gui-he. High robustness image watermarking algorithm [J]. 吉林大学学报(工学版), 2017, 47(1): 249-254. |
[3] | WANG Jing-meng, ZHANG Ai-wu, ZHAO Ning-ning, MENG Xian-gang. Influence of tilting angle on tilting sampling aliasing and relationship between aliasing and resolution [J]. 吉林大学学报(工学版), 2015, 45(3): 953-960. |
[4] | XIA Ying-jie, LI Jin-ping, CHEN Rui. Automatic synthetic registration method based on substation multi-modal images [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 47-50. |
[5] | LI Zhi-min, HOU Yong-hong, WANG Bao-liang, HOU Chun-ping, ZHOU Yuan. Parallax adjustment method for stereoscopic display on mobile phones based on optical-plate [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 304-308. |
[6] | WANG Yu-lei, ZHAO Chun-hui, QI Bin. Hyperspectral anomaly detection algorithm based on spectral similarity scale [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 148-153. |
[7] | FANG Ying-ying, TENG Qi-zhi, HE Xiao-hai, YANG Xiao-min, LI Zheng-ji. Analysis for three-dimensional reconstruction technique of sandstone [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 11-15. |
[8] | QI Bin, ZHAO Chun-hui, WANG Yu-lei. Hyperspectral imagery classification based on SVM and RVM [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 143-147. |
|