Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1715-1725.doi: 10.13229/j.cnki.jdxbgxb20180627

Previous Articles    

Facial expression recognition based on separability assessment of discrete Shearlet transform

Yang LU(),Shi-gang WANG(),Wen-ting ZHAO,Yan ZHAO   

  1. Colloge of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2018-06-19 Online:2019-09-01 Published:2019-09-11
  • Contact: Shi-gang WANG E-mail:407851137@qq.com;wangshigang@vip.sina.com

Abstract:

To solve the problem of sparse expression of facial expression features, a facial expression recognition method based on separability assessment of the Discrete Shearlet Transform (DST) is proposed. DST is a relatively new image multiscale geometric analysis method. First, the DST transform is applied to the preprocessed facial expression images, and the transformation coefficients are obtained. Then, according to the separability evaluation function, the separability index in each direction and the scale coefficients are evaluated, and the low and high-frequency coefficients are fused on the best separability direction and scale. Finally, Support Vector Machine (SVM) is introduced to classify the facial expression. The experimental results show that the proposed method can select the best separability scale and direction coefficient as the feature, abandon the useless information, reduce the feature dimension and computation cost, therefore, the system is more efficient.

Key words: information processing technology, discrete separable shearlet transform, facial expression recognition, separability assessment, multiscale geometric analysis, support vector machine

CLC Number: 

  • TN911.7

Fig.1

Calculating process of shear wave coefficients and translation combination of scaling functions on anisotropic meshes"

Fig.2

Processing diagram of DST separability assessment system"

Fig.3

Image Lena and energy peak varies with decomposition scale in shearlet domain"

Fig.4

Energy ratio changes with decomposition scale in shearlet domain"

Fig.5

Reconstructed image of shearlet low and high-frequency coefficients"

Fig.6

Samples face expression images from JAFFE and CK+ datasets"

Fig.7

Normalization and equalization of facial images"

Table 1

Expression recognition rate of SVM using"

核函数 识别率/%
JAFFE CK+
线性 95.86 92.05
二阶多项式 96.71 92.89
三阶多项式 97.18 94.17
RBF 97.65 94.60
Sigmoid 82.63 87.50

Fig.8

Effect of two parameters on recognition rate"

Fig.9

Separability indexing of high-frequency coefficients in each direction of two datasets"

Fig.10

Change of recognition rate and running time with number of directions on two datasets"

Table 2

Comparison of proposed facial expression"

算法 特征 识别率/%
本文 SST-SJ+SVM 96.26
文献[8] DST+SVM 89.01
文献[16] 局部曲波变换 94.65
文献[17] Radial encoded Gabor jets 89.67
文献[18] Patch-based-Gabor 92.93
文献[19] FEETS+PRNN 83.84
文献[20] Overlap LBP+FA variant+Ensemble(SVM) 87.75

Table 3

Comparison of proposed facial expression"

算法 特征 识别率/%
本文 SST-SJ+SVM 94.05
文献[21] CSPL 89.89
文献[22] 基于TC特征 88.90
1 贲晛烨, 杨明强, 张鹏, 等 . 微表情自动识别综述[J]. 计算机辅助设计与图形学学报, 2014, 26(9): 1385-1395.
Xian-ye Ben , Yang Ming-qiang , Zhang Peng , et al . Survey on automatic micro expression recognition methods[J]. Journal of Computer Aided Design and Computer Graphics, 2014, 26(9): 1385-1395.
2 Zhang W , Ma L . Multimodal learning for facial expression recognition[J]. Pattern Recognition, 2015, 48(10): 3191-3202.
3 万川, 田彦涛, 刘帅师, 等 . 基于主动机器视觉的人脸跟踪与表情识别系统[J]. 吉林大学学报: 工学版, 2013, 43(2): 459-465.
Wan Chuan , Tian Yan-tao , Liu Shuai-shi , et al . Face tracking and facial expression recognition system based on active machine vision[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(2): 459-465.
4 张娟, 詹永照, 毛启容, 等 . 基于Gabor小波和稀疏表示的人脸表情识别[J]. 计算机工程, 2012, 38(6): 207-209, 212.
Zhang Juan , Zhan Yong-zhao , Mao Qi-rong , et al . Facial expression recognition based on gabor wavelet and sparse representation[J]. Computer Engineering, 2012, 38(6): 207-209, 212.
5 Tang M , Chen F . Facial expression recognition and its application based on curvelet transform and PSO-SVM[J]. OPTIK, 2013, 123(22): 5401-5406.
6 庄志军, 陈延嘉, 王美清 . 基于脊波变换的线性判别分析人脸识别方法[J]. 福州大学学报: 自然科学版, 2008, 36(5): 664-667.
Zhuang Zhi-jun , Chen Yan-jia , Wang Mei-qing . A face recognition method using linear discriminant analysis based on Ridgelet transform[J]. Journal of Fuzhou University (Natural Science), 2008, 36(5): 664-667.
7 赵阳 . 曲波变换在人脸识别中的应用[D]. 西安: 西安理工大学计算机科学与工程学院, 2009.
Zhao Yang . Curvelet transform applied on face recognition[D]. Xi'an: School of Computer Science & Engineering, Xi'an University of Technology, 2009.
8 Lu Y , Wang S G , et al . A novel approach of facial expression recognition based on shearlet transform[C]⫽IEEE 5th Global Conference on Signal and Information Processing IEEE, Montreal, QC, 2017: 398-402.
9 Hou B , Zhang X , Bu X . SAR image despeckling based on nonsubsampled Shearlet transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2012, 5(3): 809-823.
10 Lim W Q . The discrete shearlet transform: a new directional transform and compactly supported Shearlet frames[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1166-1180.
11 Shao Y H , Deng N Y , Chen W J . Improved generalized eigenvalue proximal support vector machine[J]. IEEE Signal Processing Letters, 2013, 20(3): 213-216.
12 孙雯玉 . 人脸表情识别算法研究[D]. 北京: 北京交通大学电子信息工程学院, 2006.
Sun Wen-yu . Facial expression recognition arithmetic research[D]. Beijing: School of Electronic Information Engineering, Beijing Jiaotong University, 2006.
13 李宏伟 . 一种综合先验信息的从自然图像中提取感兴趣物体的新方法[D]. 合肥: 中国科学技术大学计算机科学与技术学院, 2009.
Li Hong-wei . A novel method for extracting object-of-interest from natural image by integrating prior knowlegde[D]. Hefei: School of Computer Science and Technology, University of Science and Technology of China, 2009.
14 Lyons M J , Akamatsu S , Kamachi M G . Coding facial expressions with gabor wavelets[C]⫽3rd IEEE International Conf on Automatic Face and Gesture Recognition, Nara, Japan, 1998: 200-205.
15 Lucey P , Cohn J F , Kanade T , et al . The extended cohn-kanade dataset (CK+): a complete expression dataset for action unit and emotion-specified expression[C]⫽Proceedings of the 3rd International Workshop on CVPR for Human Communicative Behavior Analysis, USA, 2010: 94-101.
16 Ucar A . A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering[J]. Neural Computing & Applications, 2014, 27(1): 131-142.
17 Gu W , Xiang C , Venkatesh Y V . Facial expression recognition using radial encoding of local Gabor features and classifier synthesis[J]. Pattern Recognition, 2012, 45(1): 80-91.
18 Zhang L , Tjondronegoro D . Facial expression recognition using facial movement features[J]. IEEE Transactions on Affective Computing, 2011, 2(4): 219-229.
19 Kyperountas M , Tefas A , Pitas I . Salient feature and reliable classifier selection for facial expression classification[J]. Pattern Recognition, 2010, 43(3): 972-986.
20 Mistry K , Zhang L , Sexton G , et al . Facial expression recongition using firefly-based feature optimization, [C]⫽2017 IEEE Congress on Evolutionary Computation, San Sebastian Spain, 2017: 1652-1658.
21 Zhong L , Liu Q , Yang P , et al . Learning active facial patches for expression analysis[C]⫽Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, 2012: 2562-2569.
22 Shan C , Gong S , Mcowan P W . Facial expression recognition based on local binary patterns: a comprehensive study[J]. Image & Vision Computing, 2009, 27(6): 803-816.
23 代琨, 于宏毅, 仇文博, 等 . 基于SVM的网络数据无监督特征选择算法[J]. 吉林大学学报: 工学版, 2015, 45(2): 576-582.
Dai Kun , Yu Hong-yi , Wen-bo Chou , et al . Unsupervised feature selection algorithm based on support vector machine for network data[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(2): 576-582.
[1] Hong-wei ZHAO,Ming-zhao LI,Jing LIU,Huang-shui HU,Dan WANG,Xue-bai ZANG. Scene classification based on degree of naturalness and visual feature channels [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1668-1675.
[2] Jin⁃gang ZHAO,Ming ZHANG,Yu⁃lin ZHAN,Ming⁃zhi XIE. Damage criterion of reinforced concrete pier based on plastic strain energy density [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1124-1133.
[3] Chao DONG,Jing⁃hong LIU,Fang XU,Ren⁃hao WANG. Fast ship detection in optical remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1369-1376.
[4] Ke⁃yan WANG,Yan HU,Huai WANG,Yun⁃song LI. Image dehazing algorithm by sky segmentation and superpixel⁃level dark channel [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1377-1384.
[5] Jun CHEN,Qi⁃feng ZHANG,Ai⁃qun ZHANG,Du⁃si CAI. In⁃situ autonomous observation method based onhadal fish recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 953-962.
[6] Tohtonur,Hai⁃long ZHANG,Jie WANG,Na WANG,Xin⁃chen YE,Wan⁃qiong WANG. High speed median filtering algorithm based on graphics processing unit [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 979-985.
[7] Lu⁃tao LIU,Na LI. Source detection based on coprime array [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 986-993.
[8] Yin⁃juan FU,Yong LI,Li⁃qin XU,Kun⁃hui ZHANG. Design and analysis of NLFM⁃Costas RF stealth radar signal [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 994-999.
[9] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[10] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[11] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[12] KUI Hai-lin, BAO Cui-zhu, LI Hong-xue, LI Ming-da. Idling time prediction method based on least square support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1360-1365.
[13] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[14] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[15] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!