吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 677-685.doi: 10.13229/j.cnki.jdxbgxb201702045

Previous Articles     Next Articles

Spatial-spectral lossless compression of hyperspectral images using local edge based prediction

WANG Ke-yan1, LI Yun-song1, SONG Juan2, LIAO Hui-lin1, WU Xian-yun1   

  1. 1.State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071,China;
    2.School of Software, Xidian University, Xi'an 710071,China
  • Received:2015-11-25 Online:2017-03-20 Published:2017-03-20

Abstract: By fully exploiting the abundant edge features and the strong interband structural correlation of hyperspectral images, a spatial-spectral lossless compression algorithm for hyperspectral images is proposed using local edge based prediction. Based on the coding framework of spectral oriented least square (SLSQ), the algorithm presents a three-modes predictor, which adds a third prediction mode (no prediction) in addition to the original intraband prediction and interband prediction modes. Therefore, the proposed algorithm is more accordant with the correlation property of hyperspectral images. Considering that local diagonal edges generally exist in images, an improved diagonal edge based predictor is adopted for intraband prediction by introducing diagonal edge detection into the median predictor. For interband prediction, a simple but effective strategy for selecting the prediction context is first presented through the analysis of the property of the context when an edge exists in a local context window, followed by an interband predictor based on local edge structural similarity is used to select the optimal prediction context adaptively within the context window. Experimental results show that the proposed algorithm can better remove both intraband and interband correlations, improve the prediction performance and lossless compression ratio.

Key words: Information processing, hyperspectral images, lossless compression, spatial-spectral, local edge based prediction

CLC Number: 

  • TP751.1
[1] Huber-Lerner M, Hadar O, Rotman S R. Compression of hyperspectral images containing a subpixel target[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2246-2255.
[2] 郭文川, 董金磊. 高光谱成像结合人工神经网络无损检测桃的硬度[J]. 光学精密工程, 2015, 23(6): 1530-1537.
Guo Wen-chuan, Dong Jin-lei. Nondestructive detection on firmness of peaches based on hyperspectral imaging and artificial neural networks[J]. Optics and Precision Engineering, 2015, 23(6): 1530-1537.
[3] Sanjith S, Ganesan R. A review on hyperspectral image compression[C]∥Proceedings of 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Tamilnadu, India, 2014: 1159-1163.
[4] Song J W, Zhang Z W, Chen X M. Lossless compression of hyperspectral imagery via RLS filter[J]. Electronics Letters, 2013, 49(16): 992-993.
[5] Magli E, Olmo G, Quacchio E. Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(1): 21-25.
[6] Wang H, Babacan S D, Sayood K. Lossless hyperspectral image compression using context-based conditional average[J]. IEEE Trans on Geoscience and Remote Sensing, 2007, 45(12): 4187-4193.
[7] Rizzo F, Carpentieri B, Motta G, et al. Low-complexity lossless compression of hyperspectral imagery via linear prediction[J]. IEEE Signal Processing Letters, 2005, 12(2):138-141.
[8] Du Q, Ly N, Fowler J E. An operational approach to PCA+JPEG2000 compression of hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2237-2245.
[9] Wen J, Ma C, Zhao J. FIVQ algorithm for interference hyper-spectral image compression[J]. Optics Communications, 2014, 322: 97-104.
[10] 粘永健,辛勤,汤毅,等. 基于多波段预测的高光谱图像分布式无损压缩[J]. 光学精密工程, 2012,20(4): 906-912.
Nian Yong-jian, Xin Qin, Tang Yi, et al. Distributed lossless compression of hyperspectral images based on multi-band prediction[J]. Optics and Precision Engineering, 2012,20(4): 906-912.
[11] Mielikainen J. Lossless compression of hyperspectral images using lookup tables[J]. IEEE Signal Processing Letters, 2006, 13(3):157 -160.
[12] Huang B, Sriraja Y. Lossless compression of hyperspectral imagery via lookup tables with predictor selection[C]∥Image and Signal Processing for Remote Sensing XII, 2006, 6365: 63650L.
[13] 李昌国, 郭科. 应用自适应预测器排序的三阶预测高光谱图像无损压缩[J]. 光学精密工程, 2014, 22(3): 761-769.
Li Chang-guo, Guo Ke. Lossless compression of hyperspectral images using three-stage prediction based on adaptive predictor reordering[J]. Optics and Precision Engineering, 2014, 22(3): 761-769.
[14] 杨鹰, 孔玲君, 刘真. 基于压缩感知的多光谱图像去马赛克算法[J]. 液晶与显示, 2017, 32(1): 56-61.
Yang Ying, Kong Ling-jun, Liu Zhen. Multi-spectral demosaicking method based on compressive sensing[J]. Chinese Journal of Liquid Crystal and Displays, 2017, 32(1): 56-61.
[15] 殷亚男, 王晓东, 李丙玉. 基于预测和JPEG2000的MODIS红外辐射多光谱图像无损压缩算法[J]. 液晶与显示, 2013, 28(6):922-926.
Yin Ya-nan, Wang Xiao-dong, Li Bing-yu. Lossless compression method based on prediction and JPEG2000 for MODIS emissive IR bands multispectral image[J]. Chinese Journal of Liquid Crystal and Displays, 2013, 28(6):922-926.
[16] ISO/IEC 14495-1, ITU-T Recommendation T.87. Lossless and near-lossless compression of continuous-tone still images[S].
[17] Edirisinghe E A, Bedi S, Grecos C. Improvements to JPEG-LS via diagonal edge based prediction[C]∥Proceedings of SPIE, Visual Communications and Image Processing, San Jose,CA,2002:604-613.
[18] Wang K, Wang L, Liao H,et al. Lossless compression of hyperspectral images using adaptive edge-based prediction[C]∥Proceedings of SPIE, Satellite Data Compression, Communications, and Processing IX, San Diego, California, USA, 2013.
[19] AVIRIS Images[EB/OL].[2015-01-14].http://aviris.jpl.nasa.gov/html/aviris. overview.html.
[20] AVIRIS Images in CCSDS Test Set[EB/OL].[2015-01-14].http://compression.jpl.nasa.gov/hyperspectral.
[21] Kiely A B, Klimesh M A. Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery[J]. IEEE Trans on Geoscience and Remote Sensing, 2009, 47(8):2672-2678.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!