Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 685-691.doi: 10.13229/j.cnki.jdxbgxb20180791

Previous Articles    

Knowledge graph embedding with adaptive sampling

Dan-tong OUYANG1,2(),Cong MA1,2,Jing-pei LEI1,2(),Sha-sha FENG1,2   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012, China
    2.Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2018-07-29 Online:2020-03-01 Published:2020-03-08
  • Contact: Jing-pei LEI E-mail:ouyd@jlu.edu.cn;378666306@qq.com

Abstract:

Due to the imbalance of KG data and the difficulty of training, that random sampling of training data may make it difficult for embedded models to converge rapidly. Therefore, in this paper, an adaptive method for sampling of training data is proposed. The training data are grouped according to the different relationships. In the sampling process, a group is determined according to the probability, and then an instance is randomly selected from the determined group for training. At the same time, according to the training effect, the probability of each selected instance is adjusted adaptively. Experimental results show that adaptive grouping filter achieves better results in link prediction tasks, and enables the embedded model to converge faster and better.

Key words: artificial intelligence, knowledge graph embedding, translation-based embedding models, adaptive sampling, link prediction

CLC Number: 

  • TP391

Table 1

Data set"

数据集实体数关系数训练集验证集测试集
FB15k14 9511 345483 14250 00059 071
WN1840 94318141 4425 0005 000
FB15k-23714 541237272 11517 53520 466

Table 2

Result of FB15k, WN18 and FB15k-237 by filter"

数据集MetricTransEASTTransE_NZLAST_NZL
FB15kMean Rank142134144117
Hits@100.7140.7160.7330.795
WN18Mean Rank490457456425
Hits@100.9320.9390.9260.946
FB15k-237Mean Rank252255319308
Hits@100.4220.4230.4430.458

Fig.1

Mean Rank results of FB15k, WN18 and FB15k-237"

Fig.2

Hits@10 results of FB15k, WN18 and FB15k-237"

1 Bollacker K, Evans C, Paritosh P, et al. Freebase:a collaboratively created graph database for structuring human knowledge[C]∥ Proceedings of the SIGMOD Conference, Vancouver, Canada, 2008: 1247- 1250.
2 Miller G A. WordNet: a lexical database for English[J]. Communications of the Acm, 1995, 38( 11): 39- 41.
3 Lehmann J, Isele R, Jakob M, et al. DBpedia-a large-scale, multilingual knowledge base extracted from wikipedia[J]. Semantic Web, 2015, 6( 2): 167- 195.
4 Daiber J, Jakob M, Hokamp C, et al. Improving efficiency and accuracy in multilingual entity extraction[C]∥ Proceedings of the 9th International Conference on Semantic Systems, Graz, Austria, 2013: 121- 124.
5 Zhang Y, Dai H, Kozareva Z, et al. Variational reasoning for question answering with knowledge graph[C]∥ Proceedings of the 32nd AAAI, New Orleans, 2018: 6069- 6076.
6 Wang Q, Mao Z, Wang B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29( 12), 2724- 2743.
7 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53( 2): 247- 261.
Liu Zhi-yuan, Sun Mao-song, Lin Yan-kai, et al. Knowledge representation learning: a review[J]. Journal of Computer Research and Development, 2016, 53 ( 2): 247- 261.
8 Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational data[C]∥ Proceedings of the 27th Annual Conference on Neural Information Processing System, Lake Tahoe, 2013: 2787- 2795.
9 Wang Z, Zhang J, Feng J, et al. Knowledge graph embedding by translating on hyperplanes[C]∥ Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Canada, 2014: 1112- 1119.
10 Lin Y, Liu Z, Zhu X, et al. Learning entity and relation embeddings for knowledge graph completion[C]∥ Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 2015: 2181- 2187.
11 Ji G, He S, Xu L, et al. Knowledge graph embedding via dynamic mapping matrix[C]∥ Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, Beijing, China, 2015: 687- 696.
12 Ji G, Liu K, He S, et al. Knowledge graph completion with adaptive sparse transfer matrix[C]∥ Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA, 2016: 985- 991.
13 Liu H, Wu Y, Yang Y. Analogical inference for multi-relational embeddings[C]∥ Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 2017: 2168- 2178.
14 Wang P, Li S, Pan R. Incorporating GAN for negative sampling in knowledge representation learning[C]∥ Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, 2018: 2005- 2012.
15 Liu H, Wu Y, Yang Y. Adaptive sampling for SGD by exploiting side information[C]∥ Proceedings of the 33rd International Conference on Machine Learning, New York, 2016: 364- 372.
16 刘峤, 韩明皓, 杨晓慧, 等. 基于表示学习和语义要素感知的关系推理算法[J]. 计算机研究与发展, 2017, 54( 8): 1682- 1692.
Liu Qiao, Han Ming-hao, Yang Xiao-hui, et al. Representation learning based relational inference algorithm with semantical aspect awareness[J]. Journal of Computer Research and Development, 2017, 54( 8): 1682- 1692.
[1] Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18.
[2] Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667.
[3] Wan-fu GAO,Ping ZHANG,Liang HU. Nonlinear feature selection method based on dynamic change of selected features [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1293-1300.
[4] Dan⁃tong OUYANG,Jun XIAO,Yu⁃xin YE. Distant supervision for relation extraction with weakconstraints of entity pairs [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 912-919.
[5] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
[6] DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577.
[7] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[8] ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[9] LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[10] LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[11] HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[12] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[13] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[14] YANG Xin, XIA Si-jun, LIU Dong-xue, FEI Shu-min, HU Yin-ji. Target tracking based on improved accelerated gradient under tracking-learning-detection framework [J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[15] LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!