吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 236-244.doi: 10.13229/j.cnki.jdxbgxb20161353

• Orginal Article • Previous Articles     Next Articles

Structure parameters optimization of common rail system for gasoline direct injection engine

HU Yun-feng1, 2, WANG Chang-yong2, YU Shu-you1, 2, SUN Peng-yuan3, CHEN Hong1, 2   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2. College of Communication Engineering, Jilin University, Changchun 130022, China;
    3. R&D Center, China FAW Group Corporation, Changchun 130011, China
  • Received:2015-07-10 Online:2018-02-26 Published:2018-02-26

Abstract: To reduce the common rail pressure fluctuation and reduce the workload of experimental calibration of structure parameters for Gasoline Direct Injection (GDI) engine, a structure parameters optimization method of common rail system is proposed based on improved genetic algorithm. First, a model of GDI common rail system, including high-pressure pump, common rail pipe, injector and low-pressure pump, is developed in GT-suite environment. Second, the effects of common rail pipe volume and damping orifice diameter of the rail pressure fluctuation and rise-time are analyzed by dynamics, and the rationality of the model is verified. Finally, a control system of the common rail pressure is designed based on feedforward and feedback. On this basis, an improved genetic algorithm is used to optimize the damping orifice diameter and common rail pipe volume, considering the common rail pressure fluctuation and rise-time as the objective functions. Simulation results show the effectiveness of the proposed optimization method.

Key words: automatic control technology, GDI common rail system, structure parameters optimization, closed-loop control, genetic algorithm

CLC Number: 

  • TP273
[1] Yan F J, Wang J M.Common rail injection system iterative learning control based parameter calibration for accurate fuel injection quantity control[J]. International Journal of Automotive Technology, 2011, 12(2): 149-157.
[2] Luo Z L, Huang K.Optimized design of structure parameter of new fuel injection system[J]. Advanced Materials Research, 2013, 655: 486-490.
[3] 张斌. 高压共轨系统高压泵结构参数对轨压波动影响的仿真研究[D]. 长春:吉林大学汽车工程学院, 2012.
Zhang Bin.Research on simulation of effects of high pressure pump structural parameters on the fluctuation of rail pressure[D].Changchun: College of Automotive Engineering,Jilin University, 2012.
[4] 吕晓辰, 李国岫, 孙作宇, 等. 高压油管结构对电控单体泵燃油系统性能的影响[J]. 兵工学报, 2016, 37(10):1778-1787.
Lv Xiao-chen,Li Guo-xiu,Sun Zuo-yu,et al.Effect of high pressure fuel pipe structure on performance of electronic unit pump fuel system[J]. Acta Armamentarii, 2016, 37(10):1778-1787.
[5] 袁亚飞, 李丽, 宋睿智, 等. GDI喷油器喷嘴结构参数对喷雾特性影响分析[J]. 现代车用动力, 2016(3):22-27.
Yuan Ya-fei, Li Li, Song Rui-zhi, et al.Analysis of influence of key structure parameters about spray characteristic of injector in gasoline direct injection system[J]. Modern Vehicle Power, 2016(3):22-27.
[6] 裴海灵, 周乃君, 杨南, 等. 基于多学科设计优化的共轨管设计优化[J]. 中南大学学报:自然科学版, 2011, 42(1):234-239.
Pei Hai-ling, Zhou Nai-jun, Yang Nan, et al.Rail tube optimization based on multidisciplinary design optimization[J]. Journal of Central South University (Science and Technology),2011, 42(1):234-239.
[7] 葛继科, 邱玉辉, 吴春明, 等. 遗传算法研究综述[J]. 计算机应用研究, 2008, 25(10):2911-2916.
Ge Ji-ke, Qiu Yu-hui, Wu Chun-ming, et al.Summary of genetic algorithms research[J]. Application Research of Computers, 2008, 25(10):2911-2916.
[8] 赵万忠, 施国标, 林逸, 等. 基于遗传算法的EPS系统参数优化[J]. 吉林大学学报:工学版, 2009, 39(2):286-290.
Zhao Wan-zhong, Shi Guo-biao, Lin Yi, et al.Parameter optimization of EPS system based on genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(2):286-290.
[9] 董立岩, 苑森淼, 刘光远, 等. 一种基于遗传算法的受限制的分类器学习算法[J]. 吉林大学学报:工学版, 2007, 37(3):595-599.
Dong Li-yan, Yuan Sen-miao, Liu Guang-yuan, et al.Constrained classifier learning algorithm based on genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(3):595-599.
[10] Li H,Zuo H, Liang K, et al.Optimizing combination of aircraft maintenance tasks by adaptive genetic algorithm based on cluster search[J]. Journal of Systems Engineering and Electronics, 2016, 27(1): 140-156.
[11] Wei X K, Shao W, Zhang C, et al.Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimization[J]. IET Microwaves, Antennas & Propagation, 2014, 8(12): 965-972.
[1] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[2] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[3] WU Wei-nan,CUI Nai-gang,GUO Ji-feng,ZHAO Yang-yang. Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1827-1837.
[4] JIAO Yu-ling, ZHANG Peng, TIAN Guang-dong, XING Xiao-cui, ZOU Lian-hui. Slotting optimization of automated warehouse based on multi-population GA [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1398-1404.
[5] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[6] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[7] LI Qi-liang, CAO Guan-ning, LI Xuan, YANG Zhi-gang, ZHONG Li-yuan. Multi-parameters aerodynamic optimization of sedan [J]. 吉林大学学报(工学版), 2018, 48(3): 670-676.
[8] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] SUN Wen, WANG Qing-nian, WANG Jun-nian. Yaw-moment control of motorized vehicle for energy conservation during cornering [J]. 吉林大学学报(工学版), 2018, 48(1): 11-19.
[12] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter [J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] FENG Jian-xin. Recursive robust filtering for uncertain systems with delayed measurements [J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!