Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 678-684.doi: 10.13229/j.cnki.jdxbgxb20190623

Previous Articles    

Accurate segmentation of stroke in CT image based on deep learning

Feng-li GAO1,2(),Min TAO1,2,Xue-yan LI1,2,Xin HE3,Fan YANG3,Zhuo WANG3,Jun-feng SONG1,2,Dan TONG3()   

  1. 1.College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
    2.State Key Laboratory of Integrated Optoelectronics, Jilin University, Changchun 130012, China
    3.Radiology, The First Hospital of Jilin University, Changchun 130021, China
  • Received:2019-06-20 Online:2020-03-01 Published:2020-03-08
  • Contact: Dan TONG E-mail:gaofl@jlu.edu.cn;tongdan1968@126.com

Abstract:

In order to manual localization and quantitative analysis of stroke lesions is time-consuming and lacks consistency. This paper proposes a multi-scale U-Net deep network method to segment high density sign of ischemic stroke from non-enhanced Computed Tomography (CT), and use the Dice loss to train the model to combat the class imbalance in the image. Experiments show that the model can automatically learn salient features of high density sign in an end-to-end data-driven manner, effectively segmenting small lesions.

Key words: imaging and nuclear medicine, image segmentation, stroke, deep leaning, multi-scale analysis

CLC Number: 

  • TP391.4

Fig.1

Radiologist manually marks stroke area"

Fig.2

Ischemic stroke segmentation model framework"

Fig.3

U-net model diagram"

Fig.4

Diagram of multi-scale convolution kernel"

Fig.5

Dilate convolution diagram"

Table 1

Parameters of U-Net in experiments"

层数卷积核StrideFeatures
Conv_block13×3132
Conv_block23×3164
Conv_block33×31128
Conv_block43×31256
Conv_block5*3×31512
DeConv_block13×32256
DeConv_block23×32128
DeConv_block33×3264
DeConv_block43×3232
conv1×111

Table 2

Conv_block and DeConv_ block"

块定义卷积核Stride系数
Conv_block

conv

conv

pooling

3×3

3×3

1

1

2

Dilate_Conv3×33
DeConv_block

DeConv

conv

conv

3×3

3×3

3×3

1

1

1

Table 3

Parameters of multi-scale Conv_block"

项目卷积核StrideDilate

Multi_Conv

Pooling

Dilate_Conv

5×5

3×3

1×1

3×3

3×3

concatenate

1

1

1

2

3
DeConv

3×3

concatenate

1

Table 4

Testing result comparing"

项目Dice
MeanSD
U-Net0.820.06
Proposed model0.850.01

Fig.6

Learning curves for proposed model"

Fig.7

Partial segmentation results"

1 Kassebaum N J, Bertozzi-Villa A, Coggeshall M S, et al. Global, regional, and national levels and causes of maternal mortality during 1990-2013: a systematic analysis for the global burden of disease study 2013[J]. The Lancet, 2014, 384( 9947): 980- 1004.
2 Doyle K P, Simon R P, Stenzel-Poore M P. Mechanisms of ischemic brain damage[J]. Neuropharmacology, 2008, 55( 3): 310- 318.
3 Wang W, Wang D, Liu H, et al. Trend of declining stroke mortality in China: reasons and analysis[J]. Stroke and Vascular Neurology, 2017, 2( 3): 132- 139.
4 Ariesen M J, Claus S P, Rinkel G J E, et al. Risk factors for intracerebral hemorrhage in the general population: a systematic review[J]. Stroke, 2003, 34( 8): 2060- 2066.
5 Mullins M E, Schaefer P W, Sorensen A G, et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department[J]. Radiology, 2002, 224( 2): 353- 360.
6 Chalela J A, Kidwell C S, Nentwich L M, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison[J]. The Lancet, 2007, 369( 9558): 293- 298.
7 Rekik I, Allassonniere S, Carpenter T K, et al. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal[J]. Neuroimage: Clinical, 2012, 1( 1): 164- 178.
8 Barber P, Demchuk A, Zhang J, et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score[J]. The Lancet, 2000, 355( 9216): 1670- 1674.
9 Herweh C, Ringleb P A, Rauch G, et al. Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients[J]. International Journal of Stroke, 2016, 11( 4): 438- 445.
10 Nagel S, Sinha D, Day D, et al. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients[J]. International Journal of Stroke, 2017, 12( 6): 615- 622.
11 Takahashi N, Lee Y, Tsai D Y, et al. An automated detection method for the MCA dot sign of acute stroke in unenhanced CT[J]. Radiological Physics and Technology, 2014, 7( 1): 79- 88.
12 Chen Y, Dhar R, Heitsch L, et al. Automated quantification of cerebral edema following hemispheric infarction: application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs[J]. Neuroimage Clinical, 2016, 12: 673- 680.
13 Mitra J, Bourgeat P, Fripp J, et al. Lesion segmentation from multimodal MRI using random forest following ischemic stroke[J]. Neuroimage, 2014, 98: 324- 335.
14 贾迪, 杨金柱, 张一飞, 等. 自适应脑组织影像分割[J]. 吉林大学学报: 工学版, 2012, 42( 1): 161- 165.
Jia Di, Yang Jin-zhu, Zhang Yi-fei, et al. Self-adapting segmentation for brain tissue[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42( 1): 161- 165.
15 Shin H C, Roth H R, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35( 5): 1285- 1298.
16 Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks[J]. Neuroimage: Clinical, 2017, 15: 633- 643.
17 Zhang R, Zhao L, Lou W, et al. Automatic segmentation of acute ischemic stroke from DWI using 3D fully convolutional DenseNets[J]. IEEE Transactions on Medical Imaging, 2018, 37( 9): 2149- 2160.
18 Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521( 7553): 436- 444.
19 Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39( 4): 640- 651.
20 Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans Pattern Anal Mach Intell, 2018, 40( 4): 834- 848.
21 Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]∥ International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 2015: 234- 241.
22 Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning[J]. arXiv preprint: arXiv:1712. 04621.
23 Jiang H, Rong R, Wu J, et al. Skin lesion segmentation with improved C-UNet networks[J/OL].[ 2018-08-01].
24 郭继昌, 吴洁, 郭春乐, 等. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报: 工学版, 2019, 49( 5): 1726- 1734.
Guo Ji-chang, Wu Jie, Guo Chun-le, et al. Image super-resolution reconstruction based on residual connection convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49( 5): 1726- 1734.
25 Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]∥ Thirty-First AAAI Conference on Artificial Intelligence. AAAI Publications, 2016: 4287- 4284.
26 Perone C S, Calabrese E, Cohenadad J. Spinal cord gray matter segmentation using deep dilated convolutions[J]. Scientific Reports, 2018, 8( 1): 1- 13.
27 Kingma D P, Ba J. Adam: a method for stochastic optimization[C]∥3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings, San Diego, 2015: 1- 13.
[1] Jun-jun LI,Jian-nong CAO,Bei-bei CHENG,Juan LIAO,Ying-ying ZHU. High spatial resolution remote sensing imagery segmentation based on combination of pixels and multi⁃scaleobjects using spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2098-2108.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] XIAO Ming-yao, LI Xiong-fei, ZHANG Xiao-li, ZHANG Liu. Medical image segmentation algorithm based on multi-scale region growing [J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597.
[4] LIU Zhong-min, LI Zhan-ming, LI Bo-hao, HU Wen-jin. Spectral clustering image segmentation based on sparse matrix [J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[5] ZHAO Fu-qun, ZHOU Ming-quan, GENG Guo-hua. Image threshold segmentation with GA-Otsu method and quantitative identification [J]. 吉林大学学报(工学版), 2017, 47(3): 959-964.
[6] XIAO Ming-yao, LI Xiong-fei. Multi-scale 3D Otsu thresholding algorithm based on Gaussian decomposition [J]. 吉林大学学报(工学版), 2017, 47(1): 255-261.
[7] WANG Pei-zhi, TIAN Di, LONG Tao, LI Di-fei, QIU Chun-ling, LIU Dun-yi. Automatic focusing algorithm for TOF-SIMS zircon sample image [J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
[8] SHEN Xuan-jing, ZHANG He, CHEN Hai-peng, WANG Yu. Fast recursive multi-thresholding algorithm [J]. 吉林大学学报(工学版), 2016, 46(2): 528-534.
[9] ZHENG Xin, PENG Zhen-ming, XING Yan. Novel method of evaluating image segmentation algorithms based on activity degree [J]. 吉林大学学报(工学版), 2016, 46(1): 311-317.
[10] LI Yi-bing, YANG Peng, YE Fang, LIU Dan-dan. Texture image segmentation using hierarchical MRF model based on the interactive potential function and mean-field parameter estimation [J]. 吉林大学学报(工学版), 2015, 45(6): 2075-2079.
[11] LI Xiong-fei, ZHAO Hao-yu, CHEN Xiao, ZHAO Hong-wei. Irregular shape object segmentation based on visual feature [J]. 吉林大学学报(工学版), 2014, 44(4): 1140-1144.
[12] CAO Jian-nong, GUO Jia, WANG Bei, DONG Yu-wei, WANG Ping-lu. Multi-scale method of urban tree canopy clustering recognition in high-resolution images [J]. 吉林大学学报(工学版), 2014, 44(4): 1215-1224.
[13] ZHANG Jin-guo,GUO Hai-tao,WU Jun-peng,LI Yi-tong. Improved minimum symmetric Tsallis cross entropy for segmentation of a sonar image from a small underwater target [J]. 吉林大学学报(工学版), 2014, 44(3): 834-839.
[14] HE Kai, MU Xing, ZOU Gang. Improved segment-based 3D surface stereo matching algorithm [J]. 吉林大学学报(工学版), 2014, 44(01): 219-224.
[15] KANG Wen-wei, KANG Wen-ying, KANG Xiao-tao. Image transition region extraction and segmentation based on information measure [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 414-418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!