吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (01): 219-224.doi: 10.13229/j.cnki.jdxbgxb201401036

• paper • Previous Articles     Next Articles

Improved segment-based 3D surface stereo matching algorithm

HE Kai, MU Xing, ZOU Gang   

  1. School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China
  • Received:2012-08-28 Online:2014-01-01 Published:2014-01-01

Abstract:

In the traditional segment-based stereo matching approaches, local matching tends to get high mismatching rate; mover over, the plane fitting method has its limitation. In order to obtain high accuracy of disparity map, the initial disparity map is obtained by combining the improved local matching method with global one. Simultaneously, the surface model is utilized to fit each segmented region, and a decision rule of regions merging is proposed. The simulation results show that the proposed algorithm can obtain higher accuracy and more smooth disparity map between texture regions. Besides that, superior results are realized in both low-texture and texture-occluded regions.

Key words: information processing, 3D reconstruction, stereo matching, image segmentation, surface fitting

CLC Number: 

  • TN911.73

[1] Scharstein Aniel, Szeliski Richard. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal on Computer Vision, 2002, 47(1-3): 7-42.

[2] Tombari F, Mattoccia S, Di Stefano L. Classification and evaluation of cost aggregation methods for stereo correspondence[C]//IEEE International Conference on Computer Vision and Pattern Recognition, 2008: 1-8.

[3] 葛亮, 朱庆生, 傅思思, 等.改进的立体像对稠密匹配算法[J].吉林大学学报:工学版, 2010, 40(1), 212-217. Ge Liang, Zhu Qing-sheng, Fu Si-si, et al. Improved image dense stereo matching algorithm[J]. Journal of Jinlin University(Engineering and Technology Edition), 2010, 40(1): 212-217.

[4] Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]//International Conference of Computer Vision Pattern Recognition, 2006:15-18.

[5] Yang Qing-xiong, Wang Liang, Yang Rui-gang. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling[J]. Pattern Analysis and Machine Intelligence, 2009, 31(3): 492-504.

[6] 李彬彬, 王敬东, 李鹏.基于图像分割的置信传播立体匹配算法研究[J].红外技术, 2011, 33(3):167-172. Li Bin-bin, Wang Jing-dong, Li Peng. Research of stereo matching using belief propagation based on image segmentation[J]. Infrared Technology, 2011, 33(3): 167-172.

[7] Zitnick L, Kang S B. Stereo for image-based rendering using image over-segmentation[J]. International Journal of Computer Vision, 2007, 75(1): 49-65.

[8] Papadakis N, Caselles V. Multi-label depth estimation for graph cuts stereo problems[J]. Journal of Mathematical Imaging and Vision, 2010, 38(1):70-82.

[9] De-Maeztu L, Villanueva A, Cabeza R. Stereo matching using gradient similarity and locally adaptive support-weight[J]. Pattern Recognition Letters, 2011, 32(13):1643-1651.

[10] Wang Z, Zheng Z. A region based stereo matching algorithm using cooperative optimization[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2008:1-8.

[11] Cassisa C. Local vs global energy minimization methods: application to stereo matching[C]//Progress in Informatics and Computing, 2010: 678-683.

[12] Liu Zhi-hua, Han Zhen-jun, Ye Qi-xiang. A new segment-based algorithm for stereo matching[C]//Mechatronics and Automation, 2009:999-1003.

[13] Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. IEEE: Pattern Analysia and Machine Intelligence, 2002, 24(5): 603-619.

[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] LIN Jin-hua, WANG Yan-jie, WANG Lu, YAO Yu. Real-time surface reconstruction based global camera pose optimization [J]. 吉林大学学报(工学版), 2018, 48(3): 909-918.
[7] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[8] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[9] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[10] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[11] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[12] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[13] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[14] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[15] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!