Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2304-2312.doi: 10.13229/j.cnki.jdxbgxb20200733
Yan-lei XU(),Run HE,Yu-ting ZHAI,Bin ZHAO,Chen-xiao LI()
CLC Number:
1 | 李秉华,张永信,边全乐,等. 免耕夏玉米田杂草防治关键期研究[J]. 中国生态农业学报, 2013, 21(8): 998-1003. |
Li Bing-hua, Zhang Yong-xin, Bian Quan-le, et al. Critical period of weed control in no-tillage summer maize fields[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8): 998-1003. | |
2 | 李涛, 温广月, 钱振官, 等.不同类型杂草危害对小麦产量的影响[J]. 中国植保导刊, 2013, 33(4): 28-30. |
Li Tao, Wen Guang-yue, Qian Zhen-guan, et al. The influence on wheat yield loss caused by different kinds of weeds[J]. China Plant Protection, 2013, 33(4): 28-30. | |
3 | 殷连平. 杂草与病虫害[J]. 植物检疫, 1998,19(2): 109-111. |
Yin Lian-ping. Weeds and pests and diseases[J]. Plant Quarantine, 1998, 19(2): 109-111. | |
4 | 李香菊. 近年我国农田杂草防控中的突出问题与治理对策[J]. 植物保护, 2018, 44(5): 77-84. |
Li Xiang-ju. Main problems and management strategies of weeds in agricultural fields in China in recent years[J]. Plant Protection, 2018, 44(5): 77-84. | |
5 | Janc K, Czapiewski K, Wójcik M. In the starting blocks for smart agriculture: The internet as a source of knowledge in transitional agriculture[J]. NJAS-Wageningen Journal of Life Sciences, 2019, (90/91): No. 100309. |
6 | 徐艳蕾,包佳林,付大平,等. 多喷头组合变量喷药系统的设计与试验[J]. 农业工程学报, 2016, 32(17): 47-54. |
Xu Yan-lei, Bao Jia-lin, Fu Da-ping, et al. Design and experiment of variable spraying system based on multiple combined nozzles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (17): 47-54. | |
7 | 张小龙,谢正春,张念生,等. 豌豆苗期田间杂草识别与变量喷洒控制系统[J]. 农业机械学报, 2012, 43(11):220-225, 73. |
Zhang Xiao-long, Xie Zheng-chun, Zhang Nian-sheng, et al. Weed recognition from pea seedling images and variable spraying control system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 220-225, 73. | |
8 | 毛文华, 王一鸣, 张小超, 等. 基于机器视觉的田间杂草识别技术研究进展[J]. 农业工程学报, 2004, 20(5): 43-46. |
Mao Wen-hua, Wang Yi-ming, Zhang Xiao-chao, et al. Research advances of weed identification technology usingmachine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(5): 43-46. | |
9 | 颜秉忠. 机器视觉技术在玉米苗期杂草识别中的应用[J]. 农机化研究, 2018, 40(3): 212-216. |
Yan Bing-zhong. Identification of weeds in maize seedling stage by machine vision technology[J]. Journal of Agricultural Mechanization Research, 2018, 40(3): 212-216. | |
10 | 王宏艳,吕继兴. 基于纹理特征与改进SVM算法的玉米田间杂草识别[J]. 湖北农业科学, 2014, 53(13): 3163-3166, 3169. |
Wang Hong-yan, Lv Ji-xing. Identifying corn weed based on texture features and optimized SVM[J]. Hubei Agricultural Sciences, 2014, 53(13): 3163-3166, 3169. | |
11 | Lottes P, Hrferlin M, Sander S, et al. Effective vision‐based classification for separating sugar beets and weeds for precision farming[J]. Journal of Field Robotics, 2017, 34(6): 1160-1178. |
12 | Lavania S, Matey P S. Novel method for weed classification in maize field using Otsu and PCA implementation[C]∥2015 IEEE International Conference on Computational Intelligence & Communication Technology, Ghaziabad, India, 2015: 534-537. |
13 | Wang Z B, Li H, Zhu Y, et al. Review of plant identification based on image processing[J]. Archives of Computational Methods in Engineering, 2017, 24(3): 637-654. |
14 | Rojas C P, Guzmán L S, Toledo N V. Weed recognition by SVM texture feature classification in outdoor vegetable crops images[J]. Ingeniería e Investigación, 2017, 37(1): 68-74. |
15 | 张新明,涂强,冯梦清. 基于改进概率神经网络的玉米与杂草识别[J]. 山西大学学报: 自然科学版, 2015, 38(3): 432-438. |
Zhang Xin-ming, Tu Qiang, Feng Meng-qing. Weed identification method from corn based on improved probabilistic neural network[J]. Journal of Shanxi University(Natural Science Edition), 2015, 38(3): 432-438. | |
16 | 姜红花,王鹏飞,张昭,等. 基于卷积网络和哈希码的玉米田间杂草快速识别方法[J]. 农业机械学报, 2018, 49(11): 30-38. |
Jiang Hong-hua,Wang Peng-fei,Zhang Zhao,et al. Fast identification of field weeds based on deep convolutional network and binary hash code[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 30-38. | |
17 | 邓向武,齐龙,马旭,等. 基于多特征融合和深度置信网络的稻田苗期杂草识别[J]. 农业工程学报, 2018, 34(14): 165-172. |
Deng Xiang-wu, Qi Long, Ma Xu, et al. Recognition of weeds at seedling stage in paddy fields using multi-feature fusion and deep belief networks[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 165-172. | |
18 | Yu J L, Schumann A W, Cao Z, et al. Weed detection in perennial ryegrass with deep learning convolutional neural network[J]. Frontiers in Plant Science, 2019, 10: 1422. |
19 | Yu J, Sharpe S M, Schumann A W, et al. Detection of broadleaf weeds growing in turfgrass with convolutional neural networks[J]. Pest Management Science, 2019, 75(8): 2211-2218. |
20 | 刘庆飞. 农业场景下卷积神经网络的应用研究[D]. 乌鲁木齐:新疆大学电气工程学院,2019. |
Liu Qing-fei. Application research of convolutional neural network in agricultural scene[D]. Urumqi: School of Electrical Engineering, Xinjiang University, 2019. | |
21 | Wang A C, Zhang W, Wei X H. A review on weed detection using ground-based machine vision and image processing techniques[J]. Computers and Electronics in Agriculture, 2019, 158: 226-240. |
22 | Razavi S, Yalcin H. Using convolutional neural networks for plant classification[C]∥2017 25th Signal Processing and Communications Applications Conference, Antalya, Turkey, 2017: 1-4. |
23 | 孙俊,何小飞,谭文军,等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11): 159-165. |
Sun Jun,He Xiao-fei,Tan Wen-jun,et al. Recognition of crop seedling and weed recognition based on dilated convolution and global pooling in CNN[J]. Transactions of the Chinese Society of Agricultural Engineering,2018, 34(11): 159-165. | |
24 | 王淑芬, 杨玲香. 基于GA-ANN融合算法的棉田杂草特征降维及分类识别[J]. 河南农业科学,2018,47(2):148-154, 160. |
Wang Shu-fen, Yang Ling-xiang. Feature dimension reduction and category identification of weeds in cotton field based on GA-ANN complex algorithm[J]. Journal of Henan Agricultural Sciences, 2018, 47(2):148-154, 160. | |
25 | Jia Shi-jie, Wang Ping, Jia Pei-yi, et al. Research on data augmentation for image classification based on convolution neural networks[C]∥2017 Chinese Automation Congress, Jinan, China, 2017:4165-4170. |
26 | Chollet F. Xception:deep learning with depthwise separable convolutions[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 1251-1258. |
27 | Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]∥Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 2016: 2818-2826. |
28 | 陈绵书,于录录,苏越,等. 基于卷积神经网络的多标签图像分类[J]. 吉林大学学报: 工学版, 2020, 50(3): 1077-1084. |
Chen Mian-shu,Yu Lu-lu,Su Yue,et al. Multi-label images classification based on convolutional neural network[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(3): 1077-1084. | |
29 | 张根保,李浩,冉琰,等. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报: 工学版, 2020, 50(5): 1617-1626. |
Zhang Gen-bao, Li Hao, Ran Yan, et al. A transfer learning model for bearing fault diagnosis[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1617-1626. |
[1] | Yong YANG,Qiang CHEN,Fu-heng QU,Jun-jie LIU,Lei ZHANG. SP⁃k⁃means-+ algorithm based on simulated partition [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1808-1816. |
[2] | Ya-hui ZHAO,Fei-yang YANG,Zhen-guo ZHANG,Rong-yi CUI. Korean text structure discovery based on reinforcement learning and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1387-1395. |
[3] | Yan-hua DONG,Jing-wei LIU,Jing-hua ZHAO,Liang LI,Fang-xi XIE. Real-time torque tracking control based on BPNN online learning prediction model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1405-1413. |
[4] | Fu LIU,Yi-xin LIANG,Tao HOU,Yang SONG,Bing KANG,Yun LIU. Improvement of fuzzy c-harmonic mean algorithm on unbalanced data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1447-1453. |
[5] | Fu-hua SHANG,Mao-jun CAO,Cai-zhi WANG. Local outlier data mining based on artificial intelligence technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 692-696. |
[6] | Hai-ying ZHAO,Wei ZHOU,Xiao-gang HOU,Xiao-li ZHANG. Double-layer annotation of traditional costume images based on multi-task learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 293-302. |
[7] | Gen-bao ZHANG,Hao LI,Yan RAN,Qiu-jin LI. A transfer learning model for bearing fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1617-1626. |
[8] | Dan-tong OUYANG,Cong MA,Jing-pei LEI,Sha-sha FENG. Knowledge graph embedding with adaptive sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 685-691. |
[9] | Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18. |
[10] | Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667. |
[11] | Wan-fu GAO,Ping ZHANG,Liang HU. Nonlinear feature selection method based on dynamic change of selected features [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1293-1300. |
[12] | Dan⁃tong OUYANG,Jun XIAO,Yu⁃xin YE. Distant supervision for relation extraction with weakconstraints of entity pairs [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 912-919. |
[13] | GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585. |
[14] | DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577. |
[15] | WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205. |
|