Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (1): 219-230.doi: 10.13229/j.cnki.jdxbgxb20200770

Previous Articles    

Analysis and optimization of cleaning mechanism of wheat combine harvester

Duan-yang GENG1(),Xiao-dong MU1,Guo-dong ZHANG1,Zong-yuan WANG1,Jun-ke ZHU1,Hai-gang XU2   

  1. 1.School of Agricultural and Food Engineering,Shandong University of Technology,Zibo 255000,China
    2.Shi Feng Group Co. Ltd. ,Liaocheng 252800,China
  • Received:2020-10-09 Online:2022-01-01 Published:2022-01-14

Abstract:

To solve the problems of high grain loss and high impurity rate in wheat combine harvester cleaning operation in field harvest, the optimization experiment of wheat combine harvester cleaning operation parameters was carried out to explore the influence rules of operating parameters of the whole machine's cleaning device on the cleaning loss rate and impurity rate in grains, and the optimal combination of cleaning operation parameters was obtained. Test model is determined based on the airflow movement analysis, and the factors, the amplitude, frequency of cleaning sieve, fan wind speed and air flow direction angle of four parameters for the single factor tests and response surface regression test. The results show that the fan speed is significantly influence factor affecting the grain impurity rate, amplitude and frequency of cleaning are the significant influencing factors of loss rate. Using response surface test method and design-expert, the regression mathematical models of cleaning loss rate and impurity rate of grains were established, and the optimal operating parameters were obtained: the cleaning screen amplitude was 31 mm, the cleaning screen frequency was 4 Hz, the fan wind speed was 12 m/s, and the airflow direction angle was 26°. The experimental results of various parameter combinations are as follows: the rate of impurity in grains is 0.476%, and the rate of cleaning loss is 0.438%. The rate of impurity in grains and the rate of cleaning loss are 0.439% and 0.410% respectively, and the relative errors between them and the theoretical calculation are 7.8% and 6.4% respectively.

Key words: agriculture engineering, wheat harvester, cleaning, mechanics analysis, parameter optimization, response surface

CLC Number: 

  • S225.3

Fig.1

Schematic diagram of threshing and cleaning system"

Fig.2

Cleaning room structure"

Fig.3

Stress analysis of grains"

Fig.4

Motion analysis of cleaning"

Fig.5

Motion analysis on sieve(a>0)"

Fig.6

Motion analysis on sieve(a<0)"

Table 1

Test factors and levels"

水 平振幅/mm频率/Hz风速/(m·s-1方向角/(°)
152416
2153619
3254822
43551025
54561228
65571431
76581634

Fig.7

Single factor test results"

Table 2

Coding of test factors"

水平因 素

振幅x1

/mm

频率x2

/Hz

风速x3

/(m·s-1

方向角x4

/(°)

-1254822
03551025
14561228

Table 3

Orthogonal test scheme and results"

试验编号试验因素水平 Levels籽粒含杂率y1/%清选损失率y2/%
振幅x1频率x2风速x3方向角x4
111000.6000.655
21-1000.6220.535
310100.4810.623
410-100.7350.617
510010.6120.560
6100-10.6680.556
7-11000.6300.453
8-1-1000.6390.377
9-10100.5100.426
10-10-100.7690.361
11-10010.6770.373
12-100-10.6980.379
1301100.3800.601
1401-100.6400.534
1501010.5800.498
16010-10.5960.507
170-1100.4150.402
180-1-100.6520.360
190-1010.5830.382
200-10-10.6020.388
2100110.4470.536
22001-10.4690.546
2300-110.7110.450
2400-1-10.7170.451
2500000.5100.498
2600000.5520.476

Table 4

Regression model analysis of variance"

变异来源籽粒含杂率/%清选损失率/%
平方和自由度均方FP平方和自由度均方FP
模型 Model0.25140.01874.56<0.0001***0.19140.01412.84<0.0001***
x10.00410.00414.410.0030**0.1210.12109.17<0.0001***
x26×10-416×10-42.590.13550.05410.05450.94<0.0001***
x30.19010.190794.03<0.0001***0.01110.01110.270.0084**
x40.00210.0026.720.0250*7×10-517×10-50.0620.8083
x1x24×10-514×10-50.170.68485×10-415×10-40.460.5127
x1x36×10-616×10-60.0260.87559×10-419×10-40.820.3838
x1x43×10-413×10-41.260.28563×10-513×10-50.0240.8806
x2x31×10-411×10-40.540.47622×10-412×10-40.150.7080
x2x42×10-612×10-60.0090.92512×10-612×10-60.0020.9640
x3x46×10-516×10-50.260.61802×10-512×10-50.0190.8924
x120.03410.034139.79<0.0001***8×10-418×10-40.780.3946
x221×10-611×10-60.0040.94789×10-419×10-40.820.3850
x320.00310.0030.0230.88297×10-417×10-40.680.4287
x420.00210.00250.66<0.0001***0.00210.0022.060.1792
残差0.003112×10-40.012110.001
失迷0.002102×10-40.200.94920.011100.0014.710.3453

Fig.8

Effect of single factor on cleaning"

Fig.9

Orthogonal test response surfaces of corn impurity rate"

Fig.10

Orthogonal test response surfaces of corn loss rate"

Fig.11

Field test verification"

1 徐立章,李洋,李耀明,等.谷物联合收获机清选技术与装置研究进展[J]. 农业机械学报,2019,50(10):1-16.
Xu Li-zhang,Li Yang,Li Yao-ming,et al. Research progress on cleaning technology and device of grain combine harvester[J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(10):1-16.
2 孙伟,那明君,冯江,等.割前摘脱收获机立式离心分离复脱清选装置优化[J]. 农业机械学报,2018,49(7):73-81.
Sun Wei,Na Ming-jun,Feng Jiang,et al. Optimization of centrifugal separating-rethreshing-cleaning apparatus for stripper combine harvester[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(7):73-81.
3 苏天生,韩增德,崔俊伟,等. 谷物联合收割机清选装置研究现状及发展趋势[J]. 农机化研究,2016(2):6-11.
Su Tian-sheng,Han Zeng-de,Cui Jun-wei,et al. Research status and development trend of cleaning unit of cereal combine harvesters[J]. Journal of Agricultural Mechanization Research,2016(2): 6-11.
4 王乐刚,张晓辉,冷峻,等.谷物联合收获机清选装置疲劳寿命分析[J]. 农业机械学报,2018,49():282-287.
Wang Le-gang,Zhang Xiao-hui,Leng Jun,et al. Fatigue life analysis of grain combine harvester cleaning device[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(S1):282-287.
5 李洋,徐立章,周蓥,等.脱出物喂入量对多风道清选装置内部气流场的影响[J]. 农业工程学报,2017,33(12):48-55.
Li Yang,Xu Li-zhang,Zhou Ying,et al. Effect of extractions feed-quantity on airflow field in multi-ducts cleaning device[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(12): 48-55.
6 樊晨龙,崔涛,张东兴,等.纵轴流联合收获机双层异向清选装置设计与试验[J]. 农业机械学报,2018,49():239-248.
Fan Chen-long,Cui Tao,Zhang Dong-xing,et al. Design and experiment of double-layered reverse cleaning device for axial flow combine harvester[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(S1):239-248.
7 李骅,张美娜,尹文庆,等.基于CFD的风筛式清选装置气流场优化[J]. 农业机械学报,2013,44():12-16.
Li Hua,Zhang Mei-na,Yin Wen-qing,et al. Optimization of airflow field on air-and-screen cleaning device based on CFD[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(S2):12-16.
8 马征,李耀明,徐立章. 仿生非光滑筛面近筛层微观气流场研究[J]. 农业机械学报,2011,42():74-77, 9.
Ma Zheng,Li Yao-ming,Xu Li-zhang. Micro flow field on adjacent screen of bionic nonsmooth cleaning screen[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(S1) : 74-77,9.
9 李耀明,赵湛,陈进,等.风筛式清选装置上物料的非线性运动规律[J]. 农业工程学报,2007,23(11):142-147.
Li Yao-ming,Zhao Zhan,Chen Jin,et al. Nonlinear motion law of material on air-and-screen cleaning mechanism[J].Transactions of the Chinese Society of Agricultural Engineering,2007, 23(11):142-147.
10 李洪昌,李耀明,唐忠,等. 风筛式清选装置振动筛上物料运动CFD-DEM数值模拟[J]. 农业机械学报,2012,43(2):79-84.
Li Hong-chang,Li Yao-ming,Tang Zhong,et al. Numerical simulation of material motion on vibrating screen of air-and-screen cleaning device based on CFD-DEM [J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(2):79-84.
11 李洪昌,李耀明,唐忠,等.基于EDEM的振动筛分数值模拟与分析[J]. 农业工程学报,2011,27(5):117-121.
Li Hong-chang,Li Yao-ming,Tang Zhong,et al. Numerical simulation and analysis of vibration screening based on EDEM[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(5): 117-121.
12 李洪昌,李耀明,唐忠,等.基于神经网络的风筛式清选装置研究[J]. 农业机械学报,2011,42():65-68.
Li Hong-chang,Li Yao-ming,Tang Zhong,et al. Air-and-screen cleaning device based on neural network[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(S1):65-68.
13 李杰,闫楚良,杨方飞. 联合收割机振动筛的动态仿真与参数优化[J]. 吉林大学学报:工学版,2006,36(5):701-704.
Li Jie,Yan Chu-liang,Yang Fang-fei. Dynamic simulation and parameter optimization of the combine harvester vibration sieve[J]. Journal of Jilin University( Engineering and Technology Edition),2006,36(5): 701-704.
14 卢琦,徐兵,刘芸,等. 基于ADAMS的往复式谷物振动筛设计与试验[J]. 山西农业大学学报:自然科学版,2019,39(2):98-104.
Lu Qi,Xu Bing,Liu Yun,et al. Design optimization and experimental evaluation of a reciprocating grain vibrating screen based on ADAMS system[J].Shanxi Agricultural University(Natural Science Edition),2019,39(2):98-104.
15 张舰,刘凡一,陈军.基于DEM的谷物清选筛振动筛分虚拟试验研究[J].农机化研究,2019,41(2):187-191.
Zhang Jian,Liu Fan-yi,Chen Jun. Virtual vibration screening experiments of grain cleaning sieve based on DEM[J]. Journal of Agricultural Mechanization Research,2019,41(2):187-191.
16 Wang L J,Ding Z J,Meng S,et al. Kinematics and dynamics of a particle on a non-simple harmonic vibrating screen [J]. Particuology,2017,32(3):167-177.
17 孙进. 基于高速摄像的风筛式清选装置中物料运动规律的研究[D]. 镇江:江苏大学机械工程学院,2007.
Sun Jin. Study on motion law of materials in air-and-screen cleaning mechanism based on high-speed imaging system[D]. Zhenjiang: School of Mechanical Engineering,Jiangsu University,2007.
18 宁小波,许磊,孙春虎,等.联合收获机多风道清选装置气流场分布与风机参数优化[J]. 农机化研究,2019,41(6):32-37.
Ning Xiao-bo,Xu Lei,Sun Chun-hu,et al. Fan's parameters optimization and internal flow field distribution in multi-duct cleaning device of combine harvester[J]. Journal of Agricultural Mechanization Research,2019,41(6):32-37.
19 刘正怀,郑一平,王志明,等.微型稻麦联合收获机气流式清选装置研究[J].农业机械学报,2015,46(7):102-108.
Liu Zheng-huai,Zheng Yi-ping,Wang Zhi-ming,et al.Design on air-flowing cleaning unit of micro rice-wheat combine harvester[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(7):102-108.
20 程超,付君,陈志,等.玉米籽粒收获机清选装置参数优化试验[J].农业机械学报,2019,50(7):151-158.
Cheng Chao, Fu Jun,Chen Zhi,et al. Optimization experiment on cleaning device parameters of corn kernel harvester[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(7):151-158.
21 李骅. 风筛式清选装置设计理论与方法研究[D]. 南京: 南京农业大学工学院,2012.
Li Hua.Research of modern design method for air-and-screen cleaning device[D]. Nanjing: School of Engineering,Nanjing Agricultural University,2012.
22 成芳,王俊.风筛式清选装置主要参数的试验研究[J].农业工程学报,1998,14(12) : 217-221.
Cheng Fang,Wang Jun.Test study on the flow field above surface of the air and screen cleaning mechanism[J]. Transactions of the CSAE,1998,14(12): 217-221.
23 文小虎,戴飞,黄晓鹏,等.小籽粒种子分离清选机的改进设计[J].林业机械与木工设备,2019,47(7):28-31.
24 周运泽,刘焘,王岩,等.联合收获机清选装置试验平台微缩设计[J].南方农机,2019,50(13):7-9.
25 杜洪恿,王永刚,张恒,等. 联合收割机清选装置中离心风机的现状及发展趋势[J].中国农机化学报,2019,40(7):73-77.
Du Hong-wei,Wang Yong-gang,Zhang Heng,et al.Current status and development trend of centrifugal fan in cleaning device of combine harvesters[J].Journal of Chinese Agricultural Mechanization,2019,40(7):73-77.
26 苏航. 脱粒与清选装置参数匹配技术与方法研究[D].哈尔滨:东北农业大学农学院,2019.
Su Hang. Research on parameter matching technology and method of threshing and cleaning device[D]. Harbin:Agricultural College,Northeast Agricultural University,2019.
[1] Zhi-hui LI,Ya-qian SUN,Peng-fei TAO,Hai-tao LI,Xin LIU. Prediction method of traffic operation risk level after traffic accident [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 127-135.
[2] Bin ZHANG,Guo-zan CHENG,Hao-cen HONG,Chun-xiao ZHAO,Da-peng BAI,Hua-yong YANG. Structure optimization of triangular groove of valve plate in axial piston pump based on SVR [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1213-1221.
[3] Zhen-jie QIAN,Cheng-qian JIN,Wen-sheng YUAN,You-liang NI,Guang-yue ZHANG. Frictional impact dynamics model of threshing process between flexible teeth and grains [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1121-1130.
[4] Kai-yu YANG,Wei LIU,Tian-hao WANG,Xian-li YU,Yin-han GAO,Xi-lai MA. A calculation method for uncertainty of crosstalk in multi⁃conductor transmission line [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 747-753.
[5] Ji-cheng HUANG,Cheng SHEN,Ai-min JI,Xian-wang LI,Bin ZHANG,Kun-peng TIAN,Hao-lu LIU. Optimization of cutting⁃conveying key working parameters of hemp harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 772-780.
[6] Duan-yang GENG,De-lei TAN,Xing-rui YU,Guo-liang SU,Qian WANG,Xiu-feng LU,Cheng-qian JIN. Design and test of corn flexible threshing cylinder element [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1923-1933.
[7] Zhong-yi CAI,Fan-xiang MENG,Qing-min CHEN,Xuan ZHAO. Preform optimization for near-net-shape forming process of complex knuckle forging [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 84-90.
[8] Rui-tao GAO,Jian SHAN,Zhou YANG,Sheng WEN,Yu-bin LAN,Quan-yong ZHANG,Yang WANG. Real⁃time interpretation system of variable spray prescription map based on plant protection UAV [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 361-374.
[9] Yuan-li GU, Yuan ZHANG, Xiao-ping RUI, Wen-qi LU, Meng LI, Shuo WANG. Short⁃term traffic flow prediction based on LSSVMoptimized by immune algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1852-1857.
[10] Fang-wu MA,Lu HAN,Yang ZHOU,Shi-ying WANG,Yong-feng PU. Multi material optimal design of vehicle product using polylactic acid composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1385-1391.
[11] Chao CHENG,Jun FU,Xin⁃long TANG,Zhi CHEN,Lu⁃quan REN. Effects of vibration mode on interface adhesion law of rice threshed mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1228-1235.
[12] NA Jing-xin, PU Lei-xin, FAN Yi-sa, SHEN Chuan-liang. Effect of temperature and humidity on the failure strength of Sikaflex-265 aluminum adhesive joints [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1331-1338.
[13] JIA Hong-lei, WANG Wan-peng, CHEN Zhi, ZHUANG Jian, WANG Wen-jun, LIU Hui-li. Real-time pressure measurement of profiling elastic press roller based on soil cone index [J]. 吉林大学学报(工学版), 2018, 48(4): 1169-1175.
[14] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[15] LI Jing, DING Ming-hui, LI Li-gang, CHEN Li-jun. Dynamic characteristics analysis and optimization of air spring based on the piston shape [J]. 吉林大学学报(工学版), 2018, 48(2): 355-363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!