Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 772-780.doi: 10.13229/j.cnki.jdxbgxb20191177

Previous Articles    

Optimization of cutting⁃conveying key working parameters of hemp harvester

Ji-cheng HUANG1,2(),Cheng SHEN2,3,Ai-min JI1(),Xian-wang LI2,Bin ZHANG2,3,Kun-peng TIAN2,Hao-lu LIU2   

  1. 1.College of Mechanical and Electrical Engineering,Hohai University,Changzhou 213022,China
    2.Nanjing Research Institute for Agricultural Mechanization,Ministry of Agriculture,Nanjing 210014,China
    3.School of Mechanical Engineering,Southeast University,Nanjing 211189,China
  • Received:2019-12-23 Online:2021-03-01 Published:2021-02-09
  • Contact: Ai-min JI E-mail:huangjicheng@caas.cn;jiam@hhuc.edu.cn

Abstract:

In order to improve the cutting efficiency and conveyor rate of hemp harvester, the central composite design experiments were conducted to optimize the working parameters. Firstly, the physical and mechanical properties of hemp stem were studied. Based on composite experiment methods of quadratic orthogonal rotation, the effects of key components' main working parameters, including cutting speed, chain conveyor speed, horizontal distance between cutting and clamping point, on cutting efficiency and convey rate were analyzed. The data were analyzed based on the Design-Expert software. The regression models of cutting efficiency and convey rate were built, and corresponding variance analysis was conducted. The response surface method was utilized to analyze the effects of factors' interaction on the cutting efficiency and conveyor rate, and the multi-objective optimizations were conducted to determine the working parameters for the best cutting efficiency and conveyor rate. The optimal combination of the working parameters of the hemp harvester are the cutting speed of 1.33 m/s, the chain conveyor speed of 1.35 m/s, and the horizontal distance between cutting and clamping point of 63.9 mm. Under this optimal combination, the cutting efficiency and conveyor rate are 44.35 stalks/s and 93.93%, respectively. The field verification test was conducted. With the optimal parameters, and the cutting efficiency and conveyor rate are 44.7 stalks/s and 92.21%, respectively, closing to the model predicted results and greatly improving the harvester performance. The study provides the scientific basis for key components' working parameters optimization of hemp harvester.

Key words: agricultural machinery, hemp, harvester, multi-objective optimization, response surface methodology

CLC Number: 

  • S225.5

Table 1

Structure and working parameters of hemp harvester"

参数数值
外形尺寸(长×宽×高)/(mm×mm×mm)3400×2100×2300
底盘动力/kW74.5
割幅/mm1 600
割茬高度/mm≤100
作业速度/(m·s-1)0.45~1.0
生产率/(hm2·h-1)0.25~0.4

Fig.1

Schematic diagram of cutting table"

Fig.2

Shape and structure of hemp stalk"

Table 2

Coding table of experimental factors and levels"

因素试验水平
-101
切割速度A/(m·s-1)1.01.21.4
链条输送速度B/(m·s-1)0.91.21.5
切割与夹持点水平距离C/mm306090

Table 3

Results and design of tests"

试验编号切割速度 /(m·s-1)链条输 送速度 /(m·s-1)切割与夹持点水平距离/mm切割效率 /(株·s-1)输送率 /%
1-10-13191.54
21104491.26
30-1-14180.50
40-113975.60
50114486.54
60004093.87
710-14191.32
8-1-103283.24
91-103881.20
100004295.50
110004093.20
120004394.58
131014686.10
14-1103292.26
15-1013188.82
1601-14284.68
170004293.36

Table 4

Regression equation analysis of variance results"

方差来源切割效率Y1/(株·s-1输送率Y2/%
平方和自由度dfF显著水平P平方和自由度dfF显著水平P
模型361.08917.070.000 6**526.51947.820.000 1**
A231.13198.35<0.000 1**4.4713.650.097 5
B18.0017.660.027 8*146.211119.51<0.000 1**
C3.1311.330.286 715.07112.320.009 9**
AB9.0013.830.091 20.2710.220.652 6
AC6.2512.660.146 91.5611.280.295 7
BC4.0011.700.233 311.4219.340.018 4*
A288.13137.500.000 5**0.2710.220.655 0
B20.4410.190.676 6228.301186.62<0.000 1**
C20.7610.320.587 2101.45182.92<0.000 1**
残差16.4578.567
失拟项9.2531.710.301 54.9631.840.280 6
误差7.2043.604
总和377.5316535.0816

Fig.3

Influence of interactive factors on cutting efficiency"

Fig.4

Influence of interactive factors on conveyor rate"

Fig.5

Field testing of hemp harvester"

1 张晓艳, 孙宇峰, 韩承伟, 等. 我国工业大麻产业发展现状及策略分析[J]. 特种经济动植物, 2019, 22(8): 26-28.
2 郭丽, 王明泽, 王殿奎, 等. 工业大麻综合利用研究进展与前景展望[J]. 黑龙江农业科学, 2014(8): 132-134.
Guo Li, Wang Ming-ze, Wang Dian-kui, et al. Research progress and prospect of comprehensive utilization of industrial hemp[J]. Heilongjiang Agricultural Sciences, 2014(8): 132-134.
3 Cassano R, Trombino S, Ferrarelli T, et al. Hemp fiber(cannabis sativa L.)derivatives with antibacterial and chelating properties[J]. Cellulose, 2013, 20(1): 547-557.
4 Kumar N, Singh T, Grewal J S, et al. Experimental investigation on the physical,mechanical and tribological properties of hemp fiber-based non-asbestos organic brake friction composites[J/OL]. [2019-03-29] 91/ab2399#references
5 Musio S, Mussig J, Amaducci S. Optimizing hemp fiber production for high performance composite applications[J]. Frontiers in Plant Science, 2018, 9: 1-14.
6 Malomo S A, Aluko R E. Kinetics of acetylcholinesterase inhibition by hemp seed protein-derived peptides[J/OL]. [2019-03-15]
7 Rodriguez-Martin N M, Toscano R, Villanueva A, et al. Neuroprotective protein hydrolysates from hemp (cannabis sativa L.) seeds[J]. Food & Function, 2019, 10: 6732-6739.
8 唐斌, 李显旺, 袁建宁, 等. 工业大麻微型收获机械的技术与发展分析[J]. 中国农机化学报, 2018, 39(2): 17-21.
Tang Bin, Li Xian-wang, Yuan Jian-ning, et al. Analysis of technology and development for hemp micro-harvesting machinery[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(2): 17-21.
9 黄继承, 李显旺, 张彬, 等. 4LMZ160型履带式苎麻联合收割机的研究[J]. 农机化研究, 2015(9): 155-158, 163.
Huang Ji-cheng, Li Xian-wang, Zhang Bin, et al. Research on the 4LMZ160 crawler ramie combine harvester[J]. Journal of Agricultural Mechanization Research, 2015(9): 155-158, 163.
10 吕江南, 马兰, 刘佳杰, 等. 黑龙江省工业大麻产业发展及收获加工机械情况调研[J]. 中国麻业科学, 2017, 39(2): 94-102.
Lv Jiang-nan, Ma Lan, Liu Jia-jie, et al. The investigation on the development of industrial hemp and its harvesting machinery of Heilongjiang province[J], Plant Fiber Sciences in China, 2017, 39(2): 94-102.
11 朱浩, 张治国, 于革. 汉麻割晒机研制与试验[J]. 农业工程, 2018, 8(2): 95-98.
Zhu Hao, Zhang Zhi-guo, Yu Ge. Development and test of hemp swather[J]. Agricultural Engineering, 2018, 8(2): 95-98.
12 熊和平. 2016-2017国家麻类产业技术发展报告[M]. 北京: 中国农业科学技术出版社, 2019.
13 Zhou Y, Li X W, Shen C, et al. Experimental analysis on mechanical model of industrial hemp stalk[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 22-29.
14 Shen C, Zhang B, Li X W, et al. Bench cutting tests and analysis for harvesting hemp stalk[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6): 56-67.
15 Kakitis A, Berzins U, Berzins R, et al. Cutting properties of hemp fibre[J]. Engineering for Rural Development, 2012, 11: 245-250.
16 Adamovics A, Kakitis A. Productivity and tensile endurance determination of hemp fiber[J]. Chemical Engineering Transactions, 2013, 35: 805-810.
17 马兰, 刘佳杰, 周韦, 等. 工业大麻干茎秆轴向压缩力学特性试验研究[J]. 中国农机化学报, 2018, 39(11): 34-40, 50.
Ma Lan, Liu Jia-jie, Zhou Wei, et al. Test of axial mechanical compressive properties for industial hemp dry stalk[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(11): 34-40, 50.
18 Huang J C, Shen C, Li X W, et al. Design and tests of hemp harvester[J]. International Agricultural Engineering Journal, 2017, 26(2): 117-127.
19 Pari L, Alfano V, Scarfone A. An innovative harvesting system for multipurpose hemp[C]∥24th International European Biomass Conference on Setting the Course for a Biobased Economy. Florence: Amsterdam, 2016: 356-358.
20 Kaniewski R, Mankowski J, Rynduch W, et al. Modemized hemp mower[C]∥Natural Fiber Wokna Naturalne. Flax and Other Bast Plants Symposium, Poznon, Poland, 1997: 25-27.
21 Chen Y, Liu J, Gratton J L. Engineering perspectives of the hemp plant, harvesting and processing[J]. Journal of Industrial Hemp, 2004, 9(2): 23-39.
22 周杨. 工业大麻圆盘切割装置的设计与试验研究[D]. 北京: 中国农业科学院研究生院, 2017.
Zhou Yang. Design and expeirmental research of hemp disc cutter[D]. Beijing: Graduate School, Chinese Academy of Agricultural Sciences, 2017.
23 王法昌, 周学建, 师清翔, 等. 新型玉米收获机横向输送装置的参数研究[J]. 农机化研究, 2010, 32(5): 152-155.
Wang Fa-chang, Zhou Xue-jian, Shi Qing-xiang, et al. Parameters study on transverse transport of new corn combine[J]. Journal of Agricultural Mechanization Research, 2010, 32(5): 152-155.
24 张宗玲, 韩增德, 李树君, 等. 玉米穗茎兼收收割台切割夹持输送装置仿真与试验[J]. 农业机械学报, 2016, 47(): 215-221.
Zhang Zong-ling, Han Zeng-de, Li Shu-jun, et al. Simulation and test on straw cutting and clamping device of corn combine harvester for stalk and ears[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Sup.1): 215-221.
25 徐向宏, 何明珠. 试验设计与Design-Expert SPSS应用[M]. 北京: 科学出版社责任有限公司, 2016.
26 王利民, 肖志刚, 刘宇欣, 等. 响应面法优化板栗基营养米挤压加工参数[J]. 吉林大学学报: 工学版, 2013, 43(2): 550-556.
Wang Li-min, Xiao Zhi-gang, Liu Yu-xin, et al. Optimization of extrusion process parameters of nutritious rice rich in chestnut by response surface method[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(2): 550-556.
27 王建楠, 刘敏基, 曹明珠, 等. 薏苡脱壳机关键部件作业参数优化与试验[J]. 农业工程学报, 2018, 34(13): 288-295.
Wang Jian-nan, Liu Min-ji, Cao Ming-zhu, et al. Working parameter optimization and experiment of key components of coix lacryma-jobi sheller[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 288-295.
28 薛钊, 付君, 陈志, 等. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报: 工学版, 2020, 50(2): 739-748.
Xue Zhao, Fu Jun, Chen Zhi, et al. Optimization experiment on parameters of chopping device of forage maize harvester[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 739-748.
29 陈魁. 试验设计与分析[M]. 北京: 清华大学出版社, 2005.
30 杨德. 试验设计与分析[M]. 北京: 中国农业出版社, 2002.
[1] Bing-hai ZHOU,Qiong WU. Balancing and bi⁃objective optimization of robotic assemble lines [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 720-727.
[2] Chao CHENG,Jun FU,Zhi CHEN,Lu-quan REN. Sieve blocking laws and stripping test of corn grain harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 761-771.
[3] Fang-wu MA,Li HAN,Liang WU,Jin-hang LI,Long-fan YANG. Damping optimization of heavy⁃loaded anti⁃vibration platform based on genetic algorithm and particle swarm algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1608-1616.
[4] Xue-shen CHEN,Tao CHEN,Tao WU,Xu MA,Ling-chao ZENG,Lin-tao CHEN. Design and experiment on harvester for winter planting potato of straw coverage [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 749-757.
[5] Yin-ping LI,Tian-xu JIN,Li LIU. Design and dynamic characteristic simulation of pantograph⁃catenary continuous energy system for pure electric LHD [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 454-463.
[6] Zhao XUE,Jun FU,Zhi CHEN,Feng-de WANG,Shao-ping HAN,Lu-quan REN. Optimization experiment on parameters of chopping device of forage maize harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 739-748.
[7] Fang-wu MA,Hong-yu LIANG,Ying ZHAO,Meng YANG,Yong-feng PU. Multi⁃objective crashworthiness optimization design of concave triangles cell structure with negative Poisson′s ratio [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 29-35.
[8] Zhong-yi CAI,Fan-xiang MENG,Qing-min CHEN,Xuan ZHAO. Preform optimization for near-net-shape forming process of complex knuckle forging [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 84-90.
[9] Fu-chun JIA,Xian-jie MENG,Yu-long LEI. Optimal design of two degrees of freedom dynamic vibration absorber based on multi-objective genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1969-1976.
[10] Fang-wu MA,Lu HAN,Yang ZHOU,Shi-ying WANG,Yong-feng PU. Multi material optimal design of vehicle product using polylactic acid composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1385-1391.
[11] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[12] SUN Xiao-ying, WANG Zhen, YANG Jin-peng, HU Ze-zheng, CHEN Jian. Electromagnetic susceptibility assessment of electronic throttle based on Bayesian network [J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[13] WANG Deng-feng, ZHANG Shuai, WANG Yong, CHEN Hui. Optimization design of assembled wheel based on performance of fatigue and 13° impact [J]. 吉林大学学报(工学版), 2018, 48(1): 44-56.
[14] YU Fan-hua, LIU Ren-yun, ZHANG Yi-min, ZHANG Xiao-li, SUN Qiu-cheng. Swarm intelligence algorithm of dynamic reliability-based robust optimization design of mechanic components [J]. 吉林大学学报(工学版), 2017, 47(6): 1903-1908.
[15] ZHOU Fang, SONG Chuan-xue, LIANG Tian-wei, XIAO Feng. Parameter matching of on-board hybrid energy storage system using NSGA-II algorithm [J]. 吉林大学学报(工学版), 2017, 47(5): 1336-1343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!