Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (4): 856-864.doi: 10.13229/j.cnki.jdxbgxb20200944

Previous Articles    

Combined sliding seismic isolation of large LNG storage tank in soft site

Shuai LIU(),Zhou XIA,Yue-chao ZHANG   

  1. School of Civil Engineering and Architecture,Zhejiang Sci?tech University,Hangzhou 310018,China
  • Received:2020-12-09 Online:2022-04-01 Published:2022-04-20

Abstract:

Liquefied natural gas (LNG) storage tank belongs to urban lifeline project, adopting seismic isolation technology to ensure its seismic safety is the development trend in the future. but the seismic isolation is a problem faced by LNG storage tank built in the coastal soft site. To solve this problem, a new combined sliding isolation scheme, which can be self-centering, energy dissipation and resistance to large deformation is proposed, and a combined isolation layer with damper reaction wall is developed. In order to verify the control effect of the new combined sliding seismic isolation scheme, taking outer tank shearing force, impulse shearing force, single pile shearing force, sloshing wave height and the horizontal displacement of seismic isolation layer as the main performance indicators, the dynamic response of lead rubber bearing isolation tank, friction pendulum isolation tank and combined isolation tank under earthquake were analyzed and compared respectively. The results show that under the action of operating basis earthquake(OBE) earthquake, the above three isolation schemes all have obvious isolation effect (except sloshing wave height), but under the safe shutdown earthquake(SSE) earthquake, only the combined sliding seismic isolation scheme can resist the large horizontal displacement of the isolation layer under large earthquake, and it has better control effect on the sloshing wave height of the LNG storage tank both under OBE and SSE earthquakes.

Key words: engineering structure, liquefied natural gas(LNG)storage tank, soft site, combined seismic isolation, seismic ground motion, fluid structure interaction

CLC Number: 

  • TU352.1

Fig.1

Effective compression area of rubber bearing"

Fig.2

Natural rubber bearing"

Fig.3

Viscous damper"

Fig.4

Sliding bearing"

Fig.5

Combined isolation layer of LNG storage tank"

Fig.6

Mechanical model of fluid structure interaction"

Fig.7

Simplified analysis model of combined isolation LNG storage tank"

Table 1

Material properties of LNG storage tank"

参 数混凝土9%Ni钢(最小屈服强度为490 MPa)液化天然气

密度/

(kg·m-3

25007850450
弹性模量/MPa3.35×1042×105

2.56×102

(体积模量)

泊松比0.20.3-

Table 2

Lumped mass model mechanical parameters of LNG storage tank"

力学参数储液罐各部分
外罐壁储液脉冲储液对流
质量/kg4.457E+073.507E+073.954E+07
刚度/(N·m-17.375E+109.186E+091.582E+07
阻尼/(N·s·m-11.81E+082.27E+072.50E+05
作用点高度/m23.1913.5319.47

Fig.8

Time history and response spectrum of ground motion"

Table 3

Seismic response results of LNG storage tank"

工况指标ST0ST1ST2ST3
OBE外罐壁剪力1.96E+085.80E+075.89E+075.30E+07
脉冲剪力1.73E+085.14E+075.14E+074.96E+07
对流剪力2.65E+072.34E+072.33E+072.03E+07
单桩剪力7.97E+052.41E+052.07E+058.11E+04
波高1.121.000.980.86
隔震层位移0.1290.1160.146
SSE外罐壁剪力4.11E+081.23E+081.19E+086.19E+07
脉冲剪力3.63E+089.67E+079.95E+075.22E+07
对流剪力5.57E+075.08E+075.11E+074.42E+07
单桩剪力1.68E+065.78E+055.67E+058.11E+04
波高2.362.142.151.80
隔震层位移0.4320.4500.484

Fig.9

Seismic response results"

Fig.10

Hysteresis curve of isolation devices(total)"

1 Christovasilis I P, Whittaker A S. Seismic analysis of conventional and isolated LNG tanks using mechanical analogs[J]. Earthquake Spectra, 2008, 24(3): 599-616.
2 Curadelli O. Equivalent linear stochastic seismic analysis of cylindrical base-isolated liquid storage tanks [J]. Journal of Constructional Steel Research, 2013, 83: 166-176.
3 Uckan E, Akbas B, Paolacci F, et al. Earthquake protection of liquid storage tanks by sliding isolation bearings[C]∥ASME Pressure Vessels Piping Div Publ, Boston, StatesUnited, 2015.
4 孙建刚, 周抚生, 郝进锋. 立式储液罐橡胶基底隔震模型实验研究[J]. 地震工程与工程振动, 1999, 19(3): 136-142.
Sun Jian-gang, Zhou Fu-sheng, Hao Jin-feng. Test study of base rubber isolation model for vertical fluid-storage tank[J]. Earthquake Engineering and Engineering Dynamics, 1999, 19(3): 136-142.
5 孙建刚, 王振, 袁朝庆. 储罐隔震设计简化分析方法[J]. 地震工程与工程振动, 2001, 21(2): 157-160.
Sun Jian-gang, Wang Zhen, Yuan Zhao-qing. A simple method of single degree of freedom system for storage tank isolation design[J]. Earthquake Engineering and Engineering Dynamics, 2001, 21(2): 157-160.
6 孙建刚, 郑建华, 崔利富, 等. LNG储罐基础隔震反应谱设计[J]. 哈尔滨工业大学学报, 2013, 45(4): 105-109.
Sun Jian-gang, Zheng Jian-hua, Cui Li-fu, et al. Base isolation response spectrum design of LNG storage tank[J]. Journal of Harbin Institute of Technology, 2013, 45(4): 105-109.
7 张瑞甫, 翁大根, 倪伟波, 等. 基于阻尼器反力墙体系的特大型LNG储罐控制研究[J]. 防灾减灾工程学报, 2011, 31(2):138-145.
Zhang Rui-fu, Weng Da-gen, Ni Wei-bo, et al. Study on seismic control of large-scale LNG storage tank based on damper reaction wall isolation system[J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(2): 138-145.
8 Zhang R, Weng D, Ren S. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system[J]. Earthquake Engineering and Engineering Vibration, 2011, 10(2): 253-262.
9 赵长军. LNG储罐滚动自复位隔震研究[D]. 大庆: 东北石油大学土木建筑学院, 2011.
Zhao Chang-jun. Research on base isolation of LNG storage tanks with resilience rolling isolator[D]. Daqing: School of Civil Engineering and Architecture,Northeast Petroleum University, 2011.
10 李想, 郝进锋, 孙建刚, 等. 立式储罐环梁滚动隔震装置力学性能分析[J]. 地震工程与工程振动, 2014, 34(1): 249-256.
Li Xiang, Hao Jin-feng, Sun Jian-gang, et al. Mechanical property and isolation effect analysis of vertical storage tank with rolling ring beam isolation device[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1): 249-256.
11 崔利富, 孙建刚, 李想, 等. 立式储罐钢筋环梁基础隔震模拟振动台试验研究[J]. 地震工程与工程振动, 2016, 36(4): 130-138.
Cui Li-fu, Sun Jian-gang, Li Xiang, et al. Simulation shaking table test of vertical storage tank with reinforcement ring beam base isolation[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(4): 130-138.
12 刘帅. 储液罐晃动响应的被动控制方法研究[J]. 噪声与振动控制, 2019, 39(2): 47-52.
Liu Shuai. Study on the passive method for controlling liquid sloshing in storage tanks[J]. Noise and Vibration Control, 2019, 39(2): 47-52.
13 Malhotra P K. Method for seismic base isolation of liquid-storage tanks[J]. Journal of Structural Engineering, 1997, 123(1): 113-116.
14 翁大根, 卢著辉, 徐斌, 等. 黏滞阻尼器力学性能试验研究[J]. 世界地震工程, 2002, 18(4): 30-34.
Weng Da-gen, Lu Zhu-hui, Xu Bin, et al. The experimental study on property of energy dissipation of viscous liquid damper[J]. World Earthquake Engineering, 2002, 18(4): 30-34.
15 Chopra Anil K. 结构动力学:理论及其在地震工程中的应用[M]. 谢礼立, 吕大刚译. 北京:高等教育出版社, 2007.
16 Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories[J]. Journal of Sound and Vibration, 1999, 225(5): 935-988.
17 . 建筑抗震设计规范 [S].
18 潘超, 张瑞甫. EQSignal: 地震波处理与生成工具[CP/OL]. [2020-03-03]..
19 Pan C, Zhang R, Luo H, et al. Target-based algorithm for baseline correction of inconsistent vibration signals[J]. Journal of Vibration and Control, 2018, 24(12): 2562-2575.
20 刘帅, 潘超, 周志光. 对人造地震动反应谱求解及拟合的几个相关问题探讨[J]. 地震学报, 2018, 40(4): 519-530.
Liu Shuai, Pan Chao, Zhou Zhi-guang. Discussions on the response spectral solution and fitting of spectrum-compatible artificial seismic waves[J]. Acta Seismologica Sinica, 2018, 40(4): 519-530.
[1] Xiu-zhen WANG,Yong-jiu QIAN,Chang-jiang SHAO,Shuai SONG. Seismic vulnerability analysis of frame structure considering floor correlation [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 202-209.
[2] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[3] YUAN Zhe, XU Dong, LIU Chun-bao, LI Xue-song, LI Shi-chao. Strength analysis of hydraulic retarder blade based on the process of thermal-fluid structure interaction [J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[4] ZHANG Yan-ling, SUN Tong, HOU Zhong-ming, LI Yun-sheng. Bending-torsion characteristics of steel-concrete curved composite beams stiffened with diaphragms [J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[5] WANG Chun-gang, ZHANG Zhuang-nan, ZHAO Da-qian, CAO Yu-fei. Experimental investigation of Σ-section channel steel with complex edge stiffeners and web holes under axial compression [J]. 吉林大学学报(工学版), 2015, 45(3): 788-796.
[6] LI Hai-feng,GUO Xiao-nong,LUO Yong-feng,GAO Xuan-neng. Collapse resistance behavior of Ferris wheel with stay cables [J]. 吉林大学学报(工学版), 2015, 45(2): 406-413.
[7] GUO Jun-ping, DENG Zong-cai, LU Hai-bo, LIN Jin-song. Experiment on shear behavior of reinforced concrete beams strengthened with prestressed high strength steel wire mesh [J]. 吉林大学学报(工学版), 2014, 44(4): 968-977.
[8] JIANG Feng-guo, ZHAO Jing-lu, ZHENG Zhong-yuan. Reliability analysis of steel columns exposed to fire by load and resistance factor design [J]. 吉林大学学报(工学版), 2014, 44(4): 978-984.
[9] JIANG Feng-guo, ZHAO Jing-lu. Reliability analysis of reinforced concrete member under fire load [J]. 吉林大学学报(工学版), 2013, 43(06): 1500-1503.
[10] BO Ming-Yuan, YAO Ji-Tao. Reliability of reinforced concrete structural element [J]. 吉林大学学报(工学版), 2010, 40(增刊): 218-0221.
[11] LI Li-ming,CHEN Yi-yi,LI Ning,CAI Yu-chun. Seismic performance of outer-shell connection of cold-formed square tubular column and H-shaped steel beam [J]. 吉林大学学报(工学版), 2010, 40(01): 67-0071.
[12] ZHANG Su-mei, YUN Di . Lateral brace arrangement for large-span half-through concrete filled steel tube arch bridge [J]. 吉林大学学报(工学版), 2009, 39(01): 108-112.
[13] SHI Gang,SHI Yong-jiu,WANG Yuan-qing . Analysis on overall buckling behaviour of ultra-high strength steel columns by ANSYS [J]. 吉林大学学报(工学版), 2009, 39(01): 113-118.
[14] Shi Gang, Shi Yong-jiu, Wang Yuan-qing. Calculational method of shear deformation for beam-to-column connection panel zone in steel frames [J]. 吉林大学学报(工学版), 2006, 36(04): 462-466.
[15] SHI Gang, SHI Yongjiu, WANG Yuanqing. Momentrotation Hysteretic Model of Semirigid Endplate Connections in Steel Frames [J]. 吉林大学学报(工学版), 2005, 35(06): 654-0660.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!