吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 978-984.doi: 10.13229/j.cnki.jdxbgxb201404012

Previous Articles     Next Articles

Reliability analysis of steel columns exposed to fire by load and resistance factor design

JIANG Feng-guo, ZHAO Jing-lu, ZHENG Zhong-yuan   

  1. School of Civil Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
  • Received:2013-11-29 Online:2014-07-01 Published:2014-07-01

Abstract: The reliability of steel columns exposed to fire is analyzed, in which the capacity reduction and fire load factors are considered. A case study for evaluating the fire and steel column temperatures and the load capacity of the steel column is carried out to analyze the structural reliability of the column. The parameters affecting the structural reliability are treated as random variables, such as the fire load, dead load, live load, thermal absorptivity of structural boundaries, thickness, density and thermal conductivity of the insulation, ratio of floor area to the total area of the fire compartment, opening factor, and so on. The mechanical and geometric properties of the steel column (e.g. yield strength, elastic modulus, cross-section area, etc.) are also taken as random variables. The fire protection systems are related to the probability of fire occurrence. The retailed analysis results show that the capacity reduction and fire load factors should not be treated as constants in all design situations; they should be varied with fire protection system in the building and the compartment size.

Key words: engineering structure, fire load factor, capacity reduction factor, reliability, steel columns, temperature field

CLC Number: 

  • TU378.2
[1] 全国量和单位标准化技术委员会.建筑设计防火规范(GBJ16-87)[S]. 北京:中国计划出版社, 2001.
[2] Takagi J, Deierlein G. Strength design criteria for steel members at elevated temperatures[J]. Journal of Constructional Steel Research, 2007, 63(8):1036-1050.
[3] 朱伯龙, 陆洲导, 胡克旭. 高温(火灾)下混凝上与钢筋的本构关系[J]. 四川建筑科学研究, 1990(1): 37-43.[3] Zhu Bo-long, Lu Zhou-dao, Hu Ke-xu. Constitutive relationship of cement and steel under the high temperature(fire)[J]. Sichuan Building Scientific Research, 1990(1): 37-43.
[4] 全国量和单位标准化技术委员会.建筑结构可靠度设计统一标准(GB50068-2001)[S]. 北京:中国建筑工业出版社, 2001.
[5] 赵国藩, 金伟良, 贡金鑫. 结构可靠度理论[M]. 北京:中国建筑工业出版社, 2002.
[6] 赵国藩. 工程结构可靠性理论与应用[M]. 大连:大连理工大学出版社, 1996.
[7] 幸坤涛, 赵国藩. 在役钢结构吊车梁疲劳可靠性与安全控制研究[D]. 大连:大连理工大学, 2002. Xing Kun-tao, Zhao Guo-fan. Fatigue reliability and safety control research of steel crane beam in service[D]. Dalian: University of Technology, 2002.
[8] Bai Li-li, Jiang Feng-guo. Application of improved hybrid genetic algorithm on optimum design[C]∥Proceedings of First International Conference of Modelling and Simulation, Nanjing, China, 2008: 247-251.
[9] European Coal and Steel Community(ECSC). Natural Fire Safety Concept, Valorization Project[M]. Product-structural Department, ARBED-Research Centre L-4009 ESCH/ALZETTE, Luxembourg, 2001.
[10] Ravindra M. Load and resistance factor design for steel[J].Journal of the Structural Division, 1978, 104:1337-1353.
[11] Corotis Ross B. Load combinations for buildings exposed to fire[J]. Engineering Journal, 2011, 28(1):37-44.
[12] Bruls A, Cajot L G, Franssen J M. Characterization of aninsulation material with regard to ECCS recommendations for the fire safety of steel structures[J]. Journal of Constructional Steel Research 1988, 99(2):111-135.
[13] Schmidt B J, Bartlett F M. Review of resistance factors for steel:data collection[J]. Canadian Journal of Civl Engineering, 2010, 29(1):98-108.
[14] Janss J, Minne R. Buckling of steel columns in fire conditions[J]. Fire Safety Journal, 2001, 4(4):227-235.
[15] Franssen J M, Talamonal D, Kruppa J. Stability of steel columns in case of fire:experimental evaluation[J]. Journal of Structural Engineering, 1998, 124(2):158-163.
[16] Kirby B R, Wainman D E, Tomlinson L N.Natural Fires in Large Scale Compartments—a British Steel Technical, Fire Research Station Collaborative Project[M]. Rotherham:British Steel Technical, 1994.
[17] Foste S, Chladna M, Hsieh C. Thermal and structural behaviour of a full-scale composite building subject to a severe compartment fire[J]. Fire Safety Journal, 2009, 42(3):183-199.
[18] Samuel L Manzello. Experimental study on the performance of a load-bearing steel stud gypsum board wall assembly exposed to a real fire[J]. Fire Safety Journal, 2011, 46(11):497-505.
[19] 王振清, 白丽丽.四面受火后钢筋混凝土柱的可靠性分析[J].华中科技大学学报:自然科学版, 2008, 36(12):125-127. Wang Zhen-qin, Bai Li-li. Reliability analysis of reinforce concrete columns subjected to four-face fire[J]. Journal of Huazhong Science and Technology University, 2008, 36(12):125-127.
[1] LIU Zhi-feng, ZHAO Dai-hong, WANG Yu-mo, HUN Lian-ming, ZHAO Yong-sheng, DONG Xiang-min. Relationship between bearing capacity of heavy machine hydrostatic rotary table and temperature field distribution of oil pad [J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[2] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[3] YU Fan-hua, LIU Ren-yun, ZHANG Yi-min, ZHANG Xiao-li, SUN Qiu-cheng. Swarm intelligence algorithm of dynamic reliability-based robust optimization design of mechanic components [J]. 吉林大学学报(工学版), 2017, 47(6): 1903-1908.
[4] WANG Guo-lin, SUN Yan-tian, LIANG Chen, YANG Jian, ZHOU Hai-chao. Contour design of radial tire based on full stress theory [J]. 吉林大学学报(工学版), 2017, 47(2): 365-372.
[5] WU Jiao-rong, WANG Yu-qin, WEI Ming, LIN Bin. Impact of length of road-side bus lane on bus operational reliability [J]. 吉林大学学报(工学版), 2017, 47(1): 82-91.
[6] SHAO Qing, XU Tao, XU Cong-zhan, GUO Hao-tian, GUO Gui-kai, ZHANG Hai-bo. Simulation of angular contact ball bearing characteristics with PEEK cage [J]. 吉林大学学报(工学版), 2017, 47(1): 163-168.
[7] ZHANG Ying-zhi, LIU Jin-tong, SHEN Gui-xiang, QI Xiao-yan, LONG Zhe. Reliability modeling of CNC machine tools system based on failure correlation analysis [J]. 吉林大学学报(工学版), 2017, 47(1): 169-173.
[8] MENG Guang-wei, FENG Xin-yu, ZHOU Li-ming, Li Feng. Structural reliability analysis based on dimension reduction algorithm [J]. 吉林大学学报(工学版), 2017, 47(1): 174-179.
[9] ZHAO Ding-xuan, WANG Qian, ZHANG Zhu-xin. Extenics theory for reliability assessment of carrier helicopter based on analytic hierarchy process [J]. 吉林大学学报(工学版), 2016, 46(5): 1528-1531.
[10] YU Fan-hua, LIU Ren-yun, ZHANG Yi-min, SUN Qiu-cheng, ZHANG Xiao-li. Intelligent algorithm for optimized dynamic reliability design of mechanic structure [J]. 吉林大学学报(工学版), 2016, 46(4): 1269-1275.
[11] CAO Shan-shan, LEI Jun-qing. Fatigue life prediction of steel structure considering interval uncertainty [J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[12] PAN Yi-yong, MA Jian-xiao, SUN Lu. Optimal path in dynamic network with random link travel times based on reliability [J]. 吉林大学学报(工学版), 2016, 46(2): 412-417.
[13] SI Wei, MA Biao, REN Jun-ping, WANG Hai-nian, GE-Sang Ze-ren. Analysis of asphalt pavement performance under freeze-thaw cycles using reliability method [J]. 吉林大学学报(工学版), 2016, 46(1): 126-132.
[14] LIU Yu-mei, ZHAO Cong-cong, XIONG Ming-ye, GUO Wen-cui, ZHANG Zhi-yuan. Reliability assessment of high-speed railway drivetrain based on matter-element model [J]. 吉林大学学报(工学版), 2015, 45(4): 1063-1068.
[15] ZHANG Yan-ling, SUN Tong, HOU Zhong-ming, LI Yun-sheng. Bending-torsion characteristics of steel-concrete curved composite beams stiffened with diaphragms [J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Huan-li, GUO LI-hong, WANG Xin-zui, LI Xiao-ming, DONG Yue-fang, FANG Yan-chao. Iris recognition based on weighted Gabor filter[J]. 吉林大学学报(工学版), 2014, 44(01): 196 -202 .
[2] YUAN Zhe, XU Dong, LIU Chun-bao, LI Xue-song, LI Shi-chao. Strength analysis of hydraulic retarder blade based on the process of thermal-fluid structure interaction[J]. 吉林大学学报(工学版), 2016, 46(5): 1506 -1512 .
[3] ZHANG Peng, LIU Xiao-song, DONG Bo, LIU Ke-ping, LI Yuan-chun. Adaptive supper-twisting control for spacecraft soft landing on asteroids[J]. 吉林大学学报(工学版), 2016, 46(5): 1609 -1615 .
[4] YU Sheng-bao, SU Fa, ZHENG Jian-bo, ZHU Zhan-shan. Design of transient electromagnetic receiving system based on LabVIEW[J]. 吉林大学学报(工学版), 2016, 46(5): 1725 -1731 .
[5] LI Chun-liang, WANG Fang-yan, ZHANG Li-hui, WANG Jing. Stress analysis of adhesively bonded single lap joint under eccentric load[J]. 吉林大学学报(工学版), 2016, 46(6): 1874 -1880 .
[6] WANG Teng, ZHOU Ming-ru, MA Lian-sheng, QIAO Hong-xia. Fracture grouting crack growth of collapsible loess based on fracture theory[J]. 吉林大学学报(工学版), 2017, 47(5): 1472 -1481 .
[7] ZHAO Er-hui, MA Biao, LI He-yan, DU Qiu, WU Jian-peng, MA Cheng-nan. Effect of non-uniform contact on friction characteristics of wet clutches[J]. 吉林大学学报(工学版), 2018, 48(3): 661 -669 .
[8] CAO Jing-hua, KONG Fan-sen, RAN Yan-zhong, SONG Rui-chen. Back pressure controller design of air compressor based on fuzzy self-adaptive PID control[J]. 吉林大学学报(工学版), 2018, 48(3): 781 -786 .
[9] CHEN Ming, CHEN Jie, XIAO Jing-bo. Design of pipeline analog digital converter used for CMOS image sensors[J]. 吉林大学学报(工学版), 2018, 48(3): 968 -976 .
[10] XIA Li-hong, DENG Zhao-xiang. Optimal design of electromechanical brake actuator through an integrated mechatronic approach[J]. 吉林大学学报(工学版), 2018, 48(4): 998 -1007 .