Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (7): 1574-1581.doi: 10.13229/j.cnki.jdxbgxb20210148

Previous Articles    

Real-time risk assessment method of multi-vehicle interaction at merging area

Jie-yu ZHU(),Yan-li MA()   

  1. School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin 150090,China
  • Received:2021-02-23 Online:2022-07-01 Published:2022-08-08
  • Contact: Yan-li MA E-mail:zhujieyu9322@163.com;mayanli@hit.edu.cn

Abstract:

To explore the traffic safety characteristics of the multi-vehicle interactive lane-changing at the merging area, the study of real-time multi-vehicle interactive risk assessment was carried out. Considering the characteristics of vehicle dynamics and multi-vehicle interaction, a Bayesian hierarchical model of real-time risk assessment was constructed based on the physical state layer, multi-vehicle interaction layer and risk probability layer of vehicles. The model parameters were calibrated by MCMC Gibbs sampling method. The model validity was tested by posterior prediction of p value and variation of parameter quantile. And the predictive performance of the model was evaluated by simulation analysis. The method of k-means clustering was adopted to classify the risk level of multi-vehicle interaction. The results show that the statistical BGR of model parameters are all less than 0.1. And the p value of Durbin-Watson's posterior, normal hypothesis, test distribution symmetry and kurtosis are all close to 0.5. So the risk assessment model is convergent and has good fitting. The AUC results show that the model is more accurate in identifying low risk, higher risk and highest risk, which has good performance. The research can evaluate the vehicle operation risk in a certain period of time and provide a reference for driving decision-making.

Key words: transportation safety engineering, real-time risk assessment, Bayesian hierarchical model, merging area, multi-vehicle interaction

CLC Number: 

  • U492.8

Fig.1

Survey location and area"

Table 1

Processing of vehicle state parameters"

t/sx/my/mv/(km·h-1a/(m·s-2θ/(°)
258.600689.331-68.38575.8383.462-5.7
258.667690.336-66.07366.2796.792-5.5
258.733691.214-63.89763.8663.627-5.3
258.800692.009-62.31363.1172.000-5.1
258.867693.339-60.08762.4823.390-5.0
258.933693.918-58.23264.0888.913-4.8
259.667702.272-36.30463.4192.971-3.0
259.733703.415-34.32361.0164.147-2.8

Fig.2

Spatial and temporal relationship of multi-vehicle interaction"

Fig.3

Schematic diagram of vehicle interactive restraint"

Table 2

Matrix construction"

12345678
1_S12S13S14S15S16S17S18
2S21_S23S24S25S26S27S28
3S31S32_S34S35S36S37S38
4S41S42S43_S45S46S47S48
5S51S52S53S54_S56S57S58
6S61S62S63S64S65_S67S68
7S71S72S73S74S75S76_S78
8S81S82S83S84S85S86S87_

Table 3

Parameter calibration of multi-vehicle interaction model"

交互车辆数/辆β1/10-2β2/10-2β3/10-3β4/10-3τ
20.2321.0371.0644.9503.914
30.1300.1070.2074.9773.711
41.0220.6477.9762.3873.612
51.0220.6477.9762.3873.411
61.0220.4727.9762.3873.209
71.2950.1070.2074.9773.108

Fig.4

Bayesian trace of covariate"

Table 4

Results of posterior p-value test"

假 设统计量p
误差独立性Durbin‐Watson0.683
正态性基于x2检验0.372
方差齐性Levene0.401
偏度偏度系数0.418
峰度峰度系数0.537

Fig.5

Variation of quantile"

Table 5

Simulation geometric parameters"

参数主线车道匝道车道

加速

车道

长度

/m

宽度

/m

数量

/条

宽度

/m

数量

/条

连接

形式

几何

特征

3.7533.52

双车道

平行式

260

Table 6

Traffic parameter input"

视频

编号

主线交

通量/(veh·h-1

匝道交

通量/(veh·h-1

大车比例/%

主线

速度/(km·h-1

匝道

速度/(km·h-1

16483483.2150~8535~60
24203846.47
38125205.11

Table 7

Synchronization record of vehicle parameter"

车辆编号车道位置/m

速度

/(km·h-1

加速度

/(m·s-2

方向角

/(°)

261?1554.59665.411.79163.85
274?1445.01254.320.19163.86
315?1390.68660.060.09162.76
334?1337.72757.12-0.21163.74
344?1315.54358.45-0.20163.56
361?1338.45158.14-0.02163.83
371?1311.34761.54-0.07163.79

Fig.6

Classification results of vehicle risk"

Table 8

AUC indicators of risk at all levels"

风险级别AUC标准误差渐近概率95% LCL95% UCL
0.716 950.051 311.869 76E-40.616 390.817 51
一般0.684 680.055 300.004 710.576 290.793 06
较高0.771 430.048 975.590 11E-60.675 460.867 41
0.803 340.045 981.876 27E-70.713 220.893 46
1 Ahammed M A, Hassan Y, Sayed T A. Modeling driver behavior and safety on freeway merging areas[J]. Journal of Transportation Engineering, 2008, 134(9):370-377.
2 Lee C, Abdel-Aty M. Analysis of crashes on freeway ramps by location of crash and presence of advisory speed signs[J]. Journal of Transportation Safety & Security, 2009, 1(2):121-134.
3 Mergia W Y, Eustace D, Chimba D, et al. Exploring factors contributing to injury severity at freeway merging and diverging locations in Ohio[J]. Accident Analysis and Prevention, 2013, 55(6):202-210.
4 Cafiso S, Graziano A D, Silvestro G D, et al. Development of comprehensive accident models for two-lane rural highways using exposure, geometry, consistency and context variables[J]. Accident Analysis & Prevention, 2010, 42(4):1072-1079.
5 Geedipally S R, Lord D, Dhavala S S. The negative binomial-Lindley generalized linear model: Characteristics and application using crash data[J]. Accident Analysis and Prevention, 2012, 45:258-265.
6 Eustace D, Aylo A, Mergia W Y. Crash frequency analysis of left-side merging and diverging areas on urban freeway segments——a case study of I-75 through downtown Dayton, Ohio[J]. Transportation Research Part C, 2015, 50(1):78-85.
7 王雪松, 宋洋, 黄合来, 等. 基于分层负二项模型的城郊公路安全影响因素研究[J].中国公路学报, 2014, 27(1):100-106.
Wang Xue-song, Song Yang, Huang He-lai, et al. Research on influencing factors of Suburban Highway safety based on hierarchical negative binomial model[J]. Chinese Journal of Highways, 2014, 27(1):100-106.
8 马聪, 张生瑞, 马壮林, 等. 高速公路交通事故非线性负二项预测模型[J].中国公路学报, 2018, 31(11):176-185.
Ma Cong, Zhang Sheng-rui, Ma Zhuang-lin, et al. Nonlinear negative binomial forecasting model for expressway traffic accidents[J]. Chinese Journal of Highways, 2018, 31(11):176-185.
9 郭璘, 周继彪, 董升, 等. 基于改进K-means算法的城市道路交通事故分析[J].中国公路学报,2012,31(4):270-279.
Guo Lin, Zhou Ji-biao, Dong Sheng, et al. Analysis of urban road traffic accidents based on improved K-means algorithm [J]. Chinese Journal of Highways, 2012,31(4):270-279.
10 Abdel A M, Pande A. Identifying crash propensity using specific traffic speed conditions[J]. Journal of Safety Research, 2005, 36(1):97-108.
11 马艳丽,范璐洋,吕天玲,等.车辆运行风险贝叶斯网络量化分级方法[J].哈尔滨工业大学学报, 2020,52(3):33-37.
Ma Yan-li, Fan Lu-yang, Lv Tian-ling, et al. Bayesian network quantitative classification method of vehicle operation risk[J]. Journal of Harbin Institute of Technology, 2020,52(3):33-37.
12 Xiong X, Chen L, Liang J, et al. Vehicle driving risk prediction based on markov chain model[J]. Discrete Dynamics in Nature and Society, 2018: 1-12.
13 Mohamed, M, Ahmed H. Application of stochastic gradient boosting technique to enhance reliability of real-time risk assessment: use of automatic vehicle identification and remote traffic microwave sensor data[J]. Transportation Research Record, 2018, 2386(1):26-34.
14 Ma Y, Qi S, Fan L, et al. Dynamic bayesian network approach to evaluate vehicle driving risk based on on-road experiment driving data[J]. IEEE Access, 2019, 99: 135050-135062.
15 Sun Jie, Sun Jian. A dynamic Bayesian network model for real-time crash prediction using traffic speed conditions data[J]. Transportation Research, Part C: Emerging Technologies, 2015, 54(5):176-186.
16 Abdel A M, Pande A, Lee C, et al. Crash risk assessment using intelligent transportation systems data and real-time intervention strategies to improve safety on freeways[J]. Journal of Intelligent Transportation Systems, 2007, 11(3):107-120.
17 Yang K, Wang X, Yu R, et al. A Bayesian dynamic updating approach for urban expressway real-time crash risk evaluation[J]. Transportation Research Part C: Emerging Technologies, 2018, 96:192-207.
18 John K. Doing Bayesian Data Analysis: A Tutorial with R and BUGS[M]. Beijing: China Machine Press, 1900.
19 刘金山, 夏强. 基于MCMC算法的贝叶斯统计方法[M]. 北京:科学出版社, 2015.
[1] DAI Cun-jie,LI Yin-zhen,MA Chang-xi,CHAI Huo,MU Hai-bo. Multi-criteria optimization for hazardous materials distribution routes under uncertain conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1694-1702.
[2] SUN Lu, XU Jian, CUI Xiang-min. Panel data models for analysis and prediction of crash count [J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778.
[3] XU Jian, SUN Lu. Modeling of excess zeros issue in crash count andysis [J]. 吉林大学学报(工学版), 2015, 45(3): 769-775.
[4] JIN Li-sheng, WANG Yan, LIU Jing-hua, WANG Ya-li, ZHENG Yi. Front vehicle detection based on Adaboost algorithm in daytime [J]. 吉林大学学报(工学版), 2014, 44(6): 1604-1608.
[5] JIN Li-sheng,NIU Qing-ning,LIU Jing-hua,QIN Yan-guang,YU Huan-huan. Driver cognitive distraction detection in different road lines [J]. 吉林大学学报(工学版), 2014, 44(3): 642-647.
[6] ZHAN Wei, LYU Qing, SHANG Yue-quan. Analysis of gray-Markov forecasting for traffic accidents in highway tunnel group region [J]. 吉林大学学报(工学版), 2014, 44(01): 62-67.
[7] JIN Li-sheng| FANG Wen-ping, HOU Hai-jing, SUN Yu-qin. Co-simulation of lane keeping control system based on BP neural network [J]. 吉林大学学报(工学版), 2010, 40(03): 650-0654.
[8] JIN Li-sheng, BART van Arem,YANG Shuang-bin1, MASCHA van der Voort,MARTIJN Tideman . Safety lane change model of vehicle assistant driving on highway [J]. 吉林大学学报(工学版), 2009, 39(03): 582-0586.
[9] Zhang Fei-jun,Wang Yun-peng,Shi Shu-ming,Li Shi-wu,Sun Fu-shen, Wang Bin-bin . Simulation of road alignment design safety evaluation [J]. 吉林大学学报(工学版), 2007, 37(03): 528-0532.
[10] Tian Jian, Li Jiang, Li Yaqiao. Calibration technique of photogrammetry of traffic accident scene [J]. 吉林大学学报(工学版), 2006, 36(增刊1): 136-0139.
[11] Wang Yunpeng, Yang Zhifa, Li Shiwu, Wang Junli. Quantitative Assessment of Influence of Traffic Environment on Road Safety [J]. 吉林大学学报(工学版), 2006, 36(01): 119-0122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!