Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 439-449.doi: 10.13229/j.cnki.jdxbgxb20211230
Lin SONG1,2(),Li-ping WANG2,3,Jun WU3(),Li-wen GUAN3,Zhi-gui LIU2
CLC Number:
1 | Chen B, Liu Y, Zhang C, et al. Time series data for equipment reliability analysis with deep learning[J]. IEEE Access, 2020, 8(99): 105484-105493. |
2 | Zuo Y, Wang H, Wu G, et al. Research on remote state monitoring and intelligent maintenance system of CNC machine tools[J]. The Journal of Engineering, 2019, 23: 8671-8675. |
3 | Kang Z, Catal C, Tekinerdogan B. Machine learning applications in production lines: a systematic literature review[J]. Computers & Industrial Engineering, 2020, 149: 106773. |
4 | Liu P L, Du Z C, Li H M, et al. Thermal error modeling based on BiLSTM deep learning for CNC machine tool[J]. Advances in Manufacturing, 2021(9): 235-249. |
5 | Chen Y, Bian R, Ding W Z, et al. A Fault Diagnosis Method of CNC Machine Tool Spindle Based on Deep Transfer Learning[C]∥Computer Information Analytics and Intelligent Systems, Kuala Lumpur, 2019: 136-140. |
6 | Duan C Q, Deng C, Li N. Reliability assessment for CNC equipment based on degradation data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 100(2): 421- 434. |
7 | Marani M, Zeinali M, Songmene V, et al. Tool wear prediction in high-speed turning of a steel alloy using long short-term memory modelling[J]. Measurement, 2021, 177: 109329. |
8 | 于向军, 槐元辉, 姚宗伟, 等. 工程车辆无人驾驶关键技术[J]. 吉林大学学报: 工学版, 2021, 51(4): 1153-1168. |
Yu Xiang-jun, Huai Yuan-hui, Yao Zong-wei, et al. Key technologies in autonomous vehicle for engineering[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1153-1168. | |
9 | He B, Liu L, Zhang D. Digital twin driven remaining useful life prediction for gear performance degradation: a review[J]. Journal of Computing and Information Science in Engineering, 2021, 21(3): 030801. |
10 | Wang J, Ye L, Gao R, et al. Digital twin for rotating machinery fault diagnosis in smart manufacturing[J]. International Journal of Production Research, 2019, 57: 3920-3934. |
11 | Luo W, Hu T, Zhang C, et al. Digital twin for CNC machine tool: modeling and using strategy[J]. Journal of Ambient Intelligence and Humanized Computing, 2018, 10(3): 1-12. |
12 | Luo W, Hu T, Ye Y, et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101974. |
13 | Tao F, Zhang M, Liu Y, et al. Digital twin driven prognostics and health management for complex equipment[J]. Cirp Annals, 2018, 67: 169-172. |
14 | Tong M, Jing X Y, Zheng Y, et al. A survey on machine learning for data fusion[J]. Information Fusion, 2020, 57(1): 115-129. |
15 | Zhao Z, Li T, Wu J, et al. Deep learning algorithms for rotating machinery intelligent diagnosis: an open source benchmark study[J]. ISA Transactions, 2020, 107: 224-255. |
16 | 金立生, 郭柏苍, 王芳荣, 等.基于改进YOLOv3的车辆前方动态多目标检测算法[J]. 吉林大学学报: 工学版, 2021, 51(4): 1427-1436. |
Jin Li-sheng, Guo Bai-cang, Wang Fang-rong, et al. Dynamic multiple object detection algorithm for vehicle forward based on improved YOLOv3[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1427-1436. | |
17 | 王立平, 张彬彬, 吴军. 基于最小二乘法的电主轴回转精度评价简[J]. 制造技术与机床, 2018(2): 54-60. |
Wang Li-ping, Zhang Bin-bin, Wu Jun. Rotation accuracy evaluation of electric spindle based on least square method[J]. Manufacturing Technology & Machine Tool, 2018(2): 54-60. | |
18 | 王立平, 赵钦志, 张彬彬. 加工中心高速电主轴综合精度分析[J]. 清华大学学报: 自然科学版, 2018, 58(8): 746-751. |
Wang Li-ping, Zhao Qin-zhi,Zhang Bin-bin. Accuracy of an electric spindle[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8):746-751. | |
19 | Anandan K P, Ozdoganlar O B. A multi orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles[J]. Precision Engineering, 2016, 43(1): 119-131. |
20 | Liang J, Wang L, Wu J, et al. Prediction of spindle rotation error through vibration signal based on Bi-LSTM classification network[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1043(4): 42011-42033. |
21 | 陈代伟, 吴军, 张彬彬, 等. 基于S试件的加工中心电主轴载荷谱编制[J]. 清华大学学报: 自然科学版, 2018, 58(12): 1107-1114. |
Chen Dai-wei, Wu Jun, Zhang Bin-bin, et al. Load spectrum compilation for machining center spindles based on S-shaped specimens[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(12): 1107-1114. |
[1] | You QU,Wen-hui LI. Single-stage rotated object detection network based on anchor transformation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 162-173. |
[2] | Gui-xia LIU,Zhi-yao PEI,Jia-zhi SONG. Prediction of protein-ATP binding site based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 187-194. |
[3] | Zun-ling DU,Yi-min ZHANG. Reliability analysis of piston pump under random flow rate [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1967-1974. |
[4] | Jie ZHANG,Wen JING,Fu CHEN. Vulnerability detection of instant messaging network protocol based on passive clustering algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2253-2258. |
[5] | Guo-fa LI,Ze-quan CHEN,Jia-long HE. New adaptive sampling strategy for structural reliability analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1975-1981. |
[6] | Li-li DONG,Dan YANG,Xiang ZHANG. Large⁃scale semantic text overlapping region retrieval based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1817-1822. |
[7] | Li-sheng JIN,Bai-cang GUO,Fang-rong WANG,Jian SHI. Dynamic multiple object detection algorithm for vehicle forward based on improved YOLOv3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1427-1436. |
[8] | Xue-ping FAN,Guang-hong YANG,Qing-kai XIAO,Yue-fei LIU. Optimal R-vine copula information fusion for failure probability analysis of long-span bridge girder [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1296-1305. |
[9] | Xiang-jun YU,Yuan-hui HUAI,Zong-wei YAO,Zhong-chao SUN,An YU. Key technologies in autonomous vehicle for engineering [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1153-1168. |
[10] | Feng-chong LAN,Ji-wen LI,Ji-qing CHEN. DG-SLAM algorithm for dynamic scene compound deep learning and parallel computing [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1437-1446. |
[11] | Jin-qing LI,Jian ZHOU,Xiao-qiang DI. Learning optical image encryption scheme based on CycleGAN [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1060-1066. |
[12] | Zhen SONG,Jun-liang LI,Gui-qiang LIU. Constant flow prediction method of variable speed hydraulic power source based on deep learning and limitation fuzzy [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1106-1110. |
[13] | Zhe-ming YUAN,Hong-jie YUAN,Yu-xuan YAN,Qian LI,Shuang-qing LIU,Si-qiao TAN. Automatic recognition and classification of field insects based on lightweight deep learning model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1131-1139. |
[14] | Bo PENG,Yuan-yuan ZHANG,Yu-ting WANG,Ju TANG,Ji-ming XIE. Automatic traffic state recognition from videos based on auto⁃encoder and classifiers [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 886-892. |
[15] | Guo-long LI,Xiao-hui TAO,Kai XU,Zhe-yu LI. Rapid measurement and identification of position dependent geometric errors of CNC machine tool turntable [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 458-467. |
|