Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2964-2970.doi: 10.13229/j.cnki.jdxbgxb20211001

Previous Articles     Next Articles

Routing method for quantum key distribution networks based on bucket weight computation

Lin BI1,2(),Shuo FANG1,2,Xiao-qiang DI2,3   

  1. 1.School of Computer Science and Technology,Changchun University of Science and Technology,Changchun 130012,China
    2.Jilin Province Key Laboratory of Network and Information Security,Changchun University of Science and Technology,Changchun 130012,China
    3.Information Center,Changchun University of Science and Technology,Changchun 130012,China
  • Received:2021-10-03 Online:2022-12-01 Published:2022-12-08

Abstract:

In the process of building a large-scale quantum key distribution network, a routing algorithm based on bucket weight calculation for quantum key distribution network is proposed to improve the success rate of key relaying in trusted relay mode, reduce the link key consumption and balance the network load, and a network architecture model based on software-defined network SDN is constructed. Among all the paths from the source node to the destination node, the controller selects the optimal path by calculating the Bucket weight, that is the bucket weight as the path priority. The simulation results show that the proposed routing method is reasonable and feasible.

Key words: quantum key distribution, routing algorithms, software defined network, bucket weight computation

CLC Number: 

  • TP393

Fig.1

QKDN network architecture model"

Fig.2

Schematic diagram of bucket weight"

Fig.3

Comparison of the three routing protocols"

Fig.4

Network topology"

Table 1

All paths from S1 to S9"

路径NodeXsdPCWi
S1 S5 S9328
S1 S5 S6 S7 S9546
S1 S5 S6 S3 S4 S8 S7 S9874
S1 S5 S6 S2 S3 S4 S8 S7 S9983
S1 S2 S6 S7 S9546
S1 S2 S6 S5 S9546
S1 S2 S6 S3 S4 S8 S7 S9874
S1 S2 S3 S6 S7 S9655
S1 S2 S3 S6 S5 S9655
S1 S2 S3 S4 S8 S7 S9765
S1 S2 S3 S4 S8 S7 S6 S5 S9983

Fig.5

RTT diagram of h1 communicating with h7"

Fig.6

Comparison chart of packet transmission rate in the maximum number of paths Max_Path"

Fig.7

Maximum number of paths Max_Path in the latency comparison chart"

Table 2

AODV protocol packet deliverability and qubit transmittance"

参数数值参数数值
发送比特量/qbits834 048发送数据包量/qbits1629
接收比特量/qbits833 536接收数据包量/qbits1628
量子比特传递率/%99.93数据包送达率/%99.93

Fig.8

Graph of the change in the amount of keys in the quantum key pool"

1 Poppe A, Peev M, Maurhart O. Outline of the SECOQC quantum-key-distribution network in Vienna[J]. International Journal of Quantum Information, 2008, 6(2): 209-218.
2 Zhang Q, Xu F, Chen Y A, et al. Large scale quantum key distribution: challenges and solutions[J]. Optics Express, 2018, 26(18): 24260-24273.
3 Sasaki M, Fujiwara M, Ishizuka H, et al. Field test of quantum key distribution in the tokyo qkd network[J].Optics Express, 2011, 19(11): 10387-10409.
4 Mehic M, Niemiec M, Rass S, et al. Quantum key distribution: a networking perspective[J]. ACM Computing Surveys (CSUR), 2020; 53(5): 1-41.
5 Golden B L, DeArmon J S, Baker E K. Computational experiments with algorithms for a class of routing problems[J]. Computers & Operations Research, 1983, 10(1): 47-59.
6 Peev M, Pacher C, Alléaume R, et al. The SECOQC quantum key distribution network in Vienna[J]. New Journal of Physics, 2009, 11:075001.
7 温浩. 量子密钥分配网络的协议和机制[D].合肥: 中国科学技术大学通信学院.2008.
Wen H. Protocols and mechanisms in the quantum key distribution networks[D]. Hefei: University of Science and Technology of China, 2008.
8 邵凯. 多用户量子通信网络拓扑结构及路由算法研究[D]. 西安: 西安电子科技大学通信学院.2014.
Shao Kai. Research on topology and routing algorithm for multi-user quantum communication network[D]. Xianan: Xidian University. 2014.
9 Han Q, Yu L, Zheng W, et al. A novel QKD network routing algorithm based on optical-path-switching[J]. Journal of Information Hiding and Multimedia Signal Processing, 2014, 5(1):13-19.
10 Jo E, Pan D, Liu J, et al. A simulation and emulation study of SDN-based multipath routing for fat-tree data center networks[J]. Proceedings Winter Simulation Conference, 2014: 3072-3083
11 Mehic M, Fazio P, Rass S, et al. A novel approach to quality of service provisioning in trusted relay quantum key distribution networks[J]. IEEE/ACM Transactions on Networking, 2018(1): 168-181.
12 Cao Y, Zhao Y, Wang J, et al. Cost-efficient quantum key distribution (QKD) over WDM networks[J]. Journal of Optical Communications and Networking, 2019, 11(6): 285-298.
13 Leone H, Miller N R, Singh D, et al. QuNet: Cost vector analysis & multi-path entanglement routing in quantum networks[J]. arXiv: 2105.00418
14 Amin R, Reisslein M, Shah N. Hybrid SDN networks: A survey of existing approaches[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3259-3306.
15 Wang Hua, Zhao Yong-li, Avishek Nag. Quantum-key-distribution (QKD) networks enabled by software-defined networks (SDN)[J]. Applied Sciences,2019, 9(10): 2081-2082.
16 Dong Kai, Zhao Yong-li, Yang Tian-cheng,et al. Tree-topology-based quantum-key-relay strategy for secure multicast services[J]. Journal of Optical Communications and Networking, 2020, 12(5): 120-132.
[1] Jun SHEN,Xiao ZHOU,Zu-qin JI. Implementation of service dynamic extended network and its node system model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2058-2068.
[2] HAN Jia-wei, LIU Yan-heng, SUN Xin, SONG Li-jun. Identity-based encryption scheme based on cloud and quantum keys [J]. 吉林大学学报(工学版), 2018, 48(2): 551-557.
[3] WU Jia-nan, WANG Shi-gang, WANG Xin-cheng, WEI Rong-kai, LIU Gui-xia. Influence of fiber channel stress on quantum key distribution bit error rate [J]. 吉林大学学报(工学版), 2017, 47(5): 1612-1616.
[4] HAN Jia-wei, LIU Yan-heng, SUN Xin, SONG Li-jun. Quantum key management algorithm based on sliding window [J]. 吉林大学学报(工学版), 2016, 46(2): 535-541.
[5] CHENG Fang, TAO Hui, ZHANG Zhi-zhong, PEI Er-rong. Low delay algorithm for DTN networks based on packet exchange [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 392-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Jin Lisheng, Wang Rongben, Gao Long, Guo Lie. Shadow path mark segmentation method based on regiongrowing for intelligent vehicle[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 132 -0135 .
[2] WANG Qiang,DAI Jing-min,HE Xiao-wa. Effect of time delay on thermal conductivity measurement with transient planar heat source technique[J]. 吉林大学学报(工学版), 2011, 41(03): 711 -715 .
[3] MA Kai, GUAN Hsin, PANG Shu-yi, ZHAN Jun. Interval control method on consistency of suspension kinematics[J]. 吉林大学学报(工学版), 2011, 41(4): 910 -914 .
[4] . [J]. 吉林大学学报(工学版), 2007, 37(06): 0 .
[5] Wei Hai-bin, Liu Han-bing, Gao Yi-ping, Li Chang-yu, Fang Ying . Effect of freezethaw cycles on dynamic strength of fly ash soils
[J]. 吉林大学学报(工学版), 2007, 37(02): 329 -0333 .
[6] Meng Guang-wei,Li Feng, Zhao Yun-liang. Reliability analysis of fatigue and fracture based on stochastic finite element method[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 16 -0019 .
[7] GUO Zi-Zheng, CHEN Chong-Shuang, WANG Xin, CHEN Ya-Qing, TAN Yong-Gang. Driving behavior risk status identification |model based on FCM[J]. 吉林大学学报(工学版), 2010, 40(02): 427 -0430 .
[8] YU Xiao-hui, SHI Yao-wu. Cross-spectral ESPRIT Method for LFM Parameter[J]. 吉林大学学报(工学版), 2005, 35(05): 551 -0555 .
[9] KONG Fan-sen,WANG Jun,SUN Hai-gang . Fuzzy comprehensive evaluation of equipment usability of engine cylinder block production line based on AHP[J]. 吉林大学学报(工学版), 2008, 38(06): 1332 -1336 .
[10] HE Dong-ye,YANG Shen-hua,KOU Shu-qing . Numerical analysis on fracture splitting technology of main bearing block of engine[J]. 吉林大学学报(工学版), 2009, 39(01): 78 -82 .