吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (02): 376-379.

Previous Articles     Next Articles

Mechanism of hot stamping hardening for ultra-high strength steel

ZHU Li-juan1,2, GU Zheng-wei1, LÜ Yi2, XU Hong1   

  1. 1. College of Materials Science and Engineering, Jilin University, Changchun 130022, China;
    2. Tec.Center, Changchun Railway Vehiccles Co., Ltd., Changchun 130062, China
  • Received:2012-04-25 Online:2013-03-01 Published:2013-03-01

Abstract: Taking steel 22MnB5 as study object, the hardering mechanism during hot stamping of ultra-high strength steel was investigated. An austenite grain calculation model during heating process and a deformation resistance model were built based on the hot simulation test results. The transient temperature fields of steel during hot stamping and quenching were calculated by the finite element method, the phase transition of the steel during hot forming was analyzed using the phase transition kinetics model, and the relationship between the microstructures and the mechanical properties was revealed. The results showed that the optimal process to get homogeneous fine lath martensite is as follow: heating 5 min at 900℃~950℃, quenching by cooling rate over 30℃/s, and maintaining pressure about 8 s.

Key words: metallic material, hot stamping, ultra-high strength steel, phase transition, martensite

CLC Number: 

  • TG111.5
[1] Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Sci, 1979, 13(3/4): 187-194.

[2] Merklein M, Lechler J. Investigation of the thermo-mechanical properties of hot stamping steels[J]. Journal of Materials and Processing Technology, 2006, 177: 452-455.

[3] Capdevila C, Gracía C A, Caballero F G. Incubation time of isothermally transformed allotriomorphic ferrite in medium carbon steels[J]. Scripta Materialia, 2001, 44(1): 129-134.

[4] Kirkaldy J S, Venugopalan D. Prediction of microstructure and hardenability in low alloy steels//International Conferenceon Phase Transformations in Ferrous Alloys, Philadelphia, USA, 1983.

[5] Li M V, Niebuhr D V, Meekisho L L, et al. Computational model for the prediction of steel hardenability[J]. Metallurgical and Materials Transactions, 1998, 29B: 661-672.

[6] Åkerström P, Oldenburg M. Austenite decomposition during press hardening of a boron steel-computer simulation and test[J]. Journal of Material Processing Technology, 2006, 174: 399-406.

[7] Perlade A,Bouaziz O,Furnemont Q.A physically based model for TRIP-aided carbon steels behaviour[J].Materials Science and Engineering A,2003,356:145-152.

[8] Bok H H, Lee M G, Pavlina E J, et al. Comparative study of the prediction of microstructure and mechanical properties for a hot-stamped B-pillar reinforcing part[J]. International Journal of Mechanical Science, 2011, 53: 744-752.
[1] GUAN Qing-feng,ZHANG Fu-tao,PENG Tao,LYU Peng,LI Yao-jun,XU Liang,DING Zuo-jun. Hot deformation behavior of 9%Cr steel contained B and Co elements [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1799-1805.
[2] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[3] GUAN Qing-feng, DONG Shu-heng, ZHENG Huan-huan, LI Chen, ZHANG Cong-lin, LV-Peng. Cr surface alloying of 45# steel by high-current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[4] ZHAO Yu-guang, YANG Xue-hui, XU Xiao-feng, ZHANG Yang-yang, NING Yu-heng. Effects of Al-10Sr modifiers with different states, modification temperature and holding time on microstructure of ZL114A alloy [J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[5] ZHANG Zhi-qiang, LIU Cong-hao, HE Dong-ye, LI Xiang-ji, LI Ji-xuan. Effect of hot stamping process of boron steel on shape precision based on performance gradient distribution [J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[6] LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin. Process optimization of hot stamping for anti-collision beam with ultra high strength [J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[7] TANG Hua-guo, MA Xian-feng, ZHAO Wei, LIU Jian-wei, ZHAO Zhen-ye. Synthesis microstructure and thermal properties of high performance bulk Al [J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[8] GUAN Qing-feng, ZHANG Yuan-wang, SUN Xiao, ZHANG Chao-ren, LYU Peng, ZHANG Cong-lin. Surface alloying of Al-W alloy by high current pulsed electron beam treatment [J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[9] YANG Xiao-hong, HANG Wen-xian, QIN Shao-gang, LIU Yong-bing, LIU Li-ping. Microstructure and wear properties of Co-based composite coatings on H13 steel surface by laser cladding [J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[10] GUAN Qing-feng, HUANG Wei, LI Huai-fu, GONG Xiao-hua, ZHANG Cong-lin, LYU Peng. Diffusion alloying of Cu-C induced by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[11] HE Bin, LI Xian-da, YING Liang, HU Ping, ZHANG Xiang-kui. Optimal design of hot stamping tools with conformal cooling channels [J]. 吉林大学学报(工学版), 2016, 46(6): 1974-1980.
[12] ZHANG Xue-guang, LIU Chun-guo, ZHENG Yuan, JIANG Zhong-hai, LI Xiang-ji. Forming limit prediction of aluminum alloy based on ductile damage and shear damage [J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
[13] LIU Xiao-bo, ZHOU De-kun, ZHAO Yu-guang. Microstructure and mechanical property of Mg2Si/Al composites fabricated by semi-solid extrusion under different isothermal heat treatments [J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[14] GU Zheng-wei, LYU Meng-meng, ZHAO Li-hui, XU Hong, LI Xin, LU Guan-han. Optimization of quenching parameters of ultrahigh strength steel in hot stamping process [J]. 吉林大学学报(工学版), 2016, 46(3): 853-858.
[15] LI Chun-ling, FAN Ding, WANG Bin, YU Shu-rong. 5A06 aluminum alloy and galvanized steel butt welding-brazing by laser with preset filler powder [J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!