吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 2052-2058.doi: 10.13229/j.cnki.jdxbgxb201606039

Previous Articles     Next Articles

Co-sparse analysis operator learning for image fusion

YIN Ming1, 2, ZHAN Yin-wei3, PEI Hai-long2   

  1. 1.School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2.Key Lab of Autonomous Systems and Networked Control, Ministry of Education, Guangzhou 510641, China;
    3.School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2016-03-22 Online:2016-11-20 Published:2016-11-20

Abstract: In order to achieve image fusion with high quality, a multi-focus image fusion scheme with co-sparse analysis is proposed. First, a co-sparse analysis operator learning model under regularization is developed, for which the analysis operator is obtained with similarity training data. Then, the images to be fused are represented by the salient features extracted with the analysis operator and their corresponding fusion coefficients are obtained with the choose-max rule. Finally, the fused image is reconstructed by minimizing a total variation norm regularized problem. Experimental results show that the proposed method outperforms the sparse synthesis based fusion method; the gain of the proposed method is up to 0.65 in terms of mutual information and 0.1 in terms of QABF.

Key words: computer application, co-sparse analysis, feature extraction, sparse representation, image fusion, multi-focus

CLC Number: 

  • TP391
[1] 牛轶峰, 沈林成. 基于IMOPSO算法的多目标多聚焦图像融合[J].电子学报, 2006, 34(9):1578-1583.
Niu Yi-feng, Shen Lin-cheng. Multiobjective optimization for multifocus image fusion using IMOPSO[J]. Chinese Journal of Electronics, 2006, 34(9): 1578-1583.
[2] Petrovic V S, Xydeas C S. Gradient-based multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2004, 13(2): 228-237.
[3] Mohammad Bagher Akbari Haghighat, Ali Aghagolzadeh, Hadi Seyedarabi. Multi-focus image fusion for visual sensor networks in DCT domain[J]. Computers & Electrical Engineering, 2011,37(5):789-797.
[4] Tang Lei, Zhao Feng, Zhao Zong-gui. The nonsubsampled contourlet transform for image fusion[C]∥In Proceedings of ICWAPR '07, Beijing,China,2007:305-310.
[5] Tessens L, Ledda A, Pizurica A, et al. Extending the depth of field in microscopy through curvelet-based frequency-adaptive image fusion[C]∥In Proceedings of ICASSP,Honolulu,USA,2007:I-861-864.
[6] Yang Bin,Li Shu-tao. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2010,59(4):884-892.
[7] 陈浩, 王延杰. 基于拉普拉斯金字塔变换的图像融合算法研究[J].激光与红外, 2009,39(4):439-442.
Chen Hao, Wang Yan-jie. Research on image fusion algorithm based on Laplacian pyramid transform[J]. Laser & Infrared,2009,39(4):439-442.
[8] Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory, 2001, 47(7):2845-2862.
[9] Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases[J]. IEEE Transactions on Information Theory, 2002, 48(9):2558-2567.
[10] Yu Nan-nan, Qiu Tian-shuang, Bi Feng, et al. Image features extraction and fusion based on joint sparse representation[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 1074-1082.
[11] 余南南,邱天爽,毕峰,等.基于K-SVD的医学图像特征提取和融合[J]. 大连理工大学学报, 2012(4):605-609.
Yu Nan-nan, Qiu Tian-shuan, Bi Feng, et al. Medical image features extraction and fusion based on K-SVD[J]. Journal of Dalian University of Technology, 2012(4):605-609.
[12] Yu Xian-chuan, Gao Guan-yin, Xu Jin-dong, et al. Remote sensing image fusion based on sparse representation[C]∥2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2014:2858-2861.
[13] Elad M, Milandfar P, Rubinstein R. Analysis versus synthesis in signal priors[J]. Inverse Problems, 2007, 23(3): 947-968.
[14] 张宗念,李金徽,黄仁泰,等. 稀疏补分析模型下迭代硬阈值正交投影[J]. 计算机应用,2013,33(8): 2387-2389,2393.
Zhang Zong-nian, Li Jin-hui, Huang Ren-tai, et al. Iterative hard thresholding orthogonal projection under cosparsity analysis model[J]. Journal of Computer Applications, 2013, 33(8): 2387-2389,2393.
[15] Nam S, Davies M E, Elad M, et al. The cosparse analysis model and algorithms[J].Applied and Computational Harmonic Analysis, 2013,34(1):30-56.
[16] Mehrdad Yaghoobi, Sangnam Nam, Remi Gribonval, et al. Constrained overcomplete analysis operator learning for cosparse signal modelling[J]. IEEE Transaction on Signal Processing, 2013,61(9):2341-2355.
[17] Ning Qiang, Chen Kan, Li Yi, et al. Image super-resolution via analysis sparse prior[J]. IEEE Signal Processing Letters, 2013, 20(4):399-402.
[18] 严洁, 阮友田, 薛珮瑶. 主被动光学图像融合技术研究[J]. 中国光学, 2015,8(3): 378-385.
Yan Jie, Ruan You-tian, Xue Pei-yao. Active and passive optical image fusion technology[J]. Chinese Optics, 2015,8(3): 378-385.
[19] 孙寿健, 魏立线, 刘佳, 等. 一种基于权重融合的JPEG隐写分析方法[J]. 液晶与显示, 2015, 30(2): 326-332.
Sun Shou-jian, Wei Li-xian, Liu Jia, et al. A rights-based re-integration method for JPEG steganalysis[J]. Chinese Journal of Liquid Crystal and Displays, 2015, 30(2): 326-332.
[20] 王嘉成, 孙海江, 刘培勋, 等. 高分辨率多传感器融合图像跟踪系统的设计与实现[J]. 液晶与显示, 2016, 31(8): 825-830.
Wang Jia-cheng, Sun Hai-jiang, Liu Pei-xun, et al. Design and implementation of high resolution multi-sensors fusion tracking system[J]. Chinese Journal of Liquid Crystal and Displays, 2016, 31(8): 825-830.
[21] 许廷发, 李俊涛, 张一舟, 等. 真彩色传递双波段图像融合[J]. 中国光学, 2014,7(3): 402-410.
Xu Ting-fa, Li Jun-tao, Zhang Yi-zhou, et al. True color transfer for dual band image fusion[J]. Chinese Optics, 2014,7(3): 402-410.
[22] Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing, 2009, 18, 2419-2434.
[23] Liu Yu, Wang Zeng-fu. Simultaneous image fusion and denoising with adaptive sparse representation[J]. IET Image Processing, 2015,9(5):347-357.
[1] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[2] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
[3] JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866.
[4] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[5] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[6] OUYANG Dan-tong, FAN Qi. Clause-level context-aware open information extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1563-1570.
[7] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[8] GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605.
[9] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[10] LIU Zhe, XU Tao, SONG Yu-qing, XU Chun-yan. Image fusion technology based on NSCT and robust principal component analysis model with similar information [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1614-1620.
[11] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[12] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] FU Wen-bo, ZHANG Jie, CHEN Yong-le. Network topology discovery algorithm against routing spoofing attack in Internet of things [J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] CAO Jie, SU Zhe, LI Xiao-xu. Image annotation method based on Corr-LDA model [J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .