Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1484-1491.doi: 10.13229/j.cnki.jdxbgxb20180351

Previous Articles    

Stability identification of public transport commute passengers based on association rules

Quan LIANG1(),Jian-cheng WENG1(),Wei ZHOU2,Jian RONG1   

  1. 1. College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China
    2. Policy Research Office, Ministry of Transport of the People’s Republic of China, Beijing 100736, China
  • Received:2018-04-16 Online:2019-09-01 Published:2019-09-11
  • Contact: Jian-cheng WENG E-mail:lquan0730@163.com;youthweng@bjut.edu.cn

Abstract:

To better understand the characteristics of public transport commute passengers with different categories and further to better meet their customized travel demands, it is necessary to find ways to identify public transport commuters’ stability accurately. Based on revealed preference survey data, public transport smart card transaction and network data, the travel chain of public transport commuter was obtained by data processing and matching. According to public transport travel behavior data of one month, five characteristic indexes were extracted to represent travel stability from the aspects of activity point, travel space and travel time. These feature indexes include the number of non-home activity categories, the proportion of typical travel chain, space balance degree, time stability and time concentration degree. Through applying FP-growth algorithm, the association rules among each characteristics attributes for different item-sets were mined depending on parameters of support, confidence and lift degree. Then, three categories of public transport commute passengers with apparently different stabilities were identified. Finally, the rationality of the proposed identification method was verified. The study results contribute to developing customized and targeted supply and demand management strategy for public transport travel, which would further help to improve the efficient and delicacy service level of public transport.

Key words: engineering of communications and transportation system, commute passenger, stability identification, association rule

CLC Number: 

  • U491.1

Table 1

Travel chain data sample of individual passenger"

卡号出行模式上车时间下车时间上车线路号下车线路号出行距离/m上车站点下车站点上车站点经度/(°)上车站点纬度/(°)下车站点经度/(°)下车站点纬度/(°)
24050273地铁

2017/4/1

08:28

2017/4/1

08:55

418115

北京

南站

木樨地116.377939.8641116.336939.9075
24050273地铁

2017/4/1

17:53

2017/4/1

16:29

148115木樨地

北京

南站

116.336939.9075116.377939.8641
?
24050273公交

2017/4/30

17:04

2017/4/30

17:39

1141148620

白云

桥西

开阳

桥南

116.339539.8973116.347139.8666

Table 2

Stability indexes generalization results of"

稳定性指标分裂点(C分类比例/%标签分类属性
N

C12=7

C23=3

10N1
52N2
38N3
R

C12=0.59

C23=0.41

7R1
54R2
39R3
A

C12=1.46

C23=2.29

15A1
46A2
39A3
P

C12=0.82

C23=0.60

41P1
31P2
28P3
T

C12=0.46

C23=0.34

27T1
38T2
35T3

Fig.1

Relationships between frequent item-sets’ support degrees and association rules"

Table 3

Mining results of two item-sets association rules"

关联规则支持度置信度提升度
N3?A30.320.842.16
A3?N30.82
N2?A20.370.711.55
A2?N20.80
R2?P10.350.651.58
P1?R20.85

Fig.2

Visualization of two item-sets association rules"

Table 4

Mining results of three item-sets"

关联规则支持度置信度提升度
N3 ∩ A3?P1

0.24

0.24

0.24

0.751.83
A3 ∩ P1?N30.892.34
N3 ∩ P1?A31.002.56
?

Table 5

Mining results of four item-sets association rules"

关联规则支持度置信度提升度
N3 ∩ A3 ∩ P1?R2

0.2

0.2

0.2

0.2

0.831.54
R2 ∩ A3 ∩ P1?N30.912.39
N3 ∩ R2 ∩ A3?P10.832.03
N3 ∩ R2 ∩ P1?A31.002.56
?

Table 6

Stability classification results of commute passengers"

序号关联规则支持度分类描述稳定性
非家活动点类别典型出行链占比活动复杂度时间稳定性时间集中度
1N3 R2 A3 P1 T10.13

2N3 R2 A3 P1 T20.06
3N2 R2 A2 P1 T20.09

4N2 R2 A2 P2 T20.07
5N2 R3 A2 P3 T30.05

6N2 R3 A1 P2 T30.05
7N2 R3 A2 P2 T30.05

Fig. 3

Stability classification visualization of commute passengers"

Fig. 4

Validation results statistics"

1 北京交通发展研究. 2016年北京市交通发展年度报告[R]. 北京: 北京交通发展研究院, 2016.
2 翁剑成, 王昌, 王月玥, 等. 基于个体出行数据的公共交通出行链提取方法[J]. 交通运输系统工程与信息, 2017, 17(3): 67-73.
WengJian-cheng, WangChang, WangYue-yue, et al. Extraction method of public transit trip chains based on the individual riders' data[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 67-73.
3 孙世超, 杨东援. 基于朴素贝叶斯分类器的公交通勤人群辨识方法[J]. 交通运输系统工程与信息, 2015, 15(6): 46-53.
SunShi-chao, YangDong-yuan. Identification of transit commuters based on naïve bayesian classifier[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(6): 46-53.
4 袁荣亮. 公共交通通勤者出行方式选择行为研究[D]. 北京: 北京工业大学城市交通学院, 2016.
YuanRong-liang. Research on travel mode choice behavior of public transport commuters[D]. Beijing: College of Metropolitan Transportation, Beijing University of Technology, 2016.
5 刘花, 陈艳艳. 北京市居民出行方式人群分类[J]. 交通标准化, 2014, 42(5): 6-11.
LiuHua, ChenYan-yan. Segmentation of travel mode group for Beijing residents[J]. Transportation Standardization, 2014, 42(5): 6-11.
6 狄迪, 杨东援. 基于人群分类的城市公交走廊客流分配模型[J]. 同济大学学报: 自然科学版, 2016, 44(2): 235-242.
DiDi, YangDong-yuan. A passenger-classification transportation assignment model for urban public traffic corridor[J]. Journal of Tongji University (Natural Science), 2016, 44(2): 235-242.
7 BartD, TijsN, MarioV, et al. Examining commuting patterns using floating car data and circular statistics: exploring the use of new methods and visualizations to study travel times[J]. Journal of Transport Geography, 2015, 48: 41-51.
8 HanJ W, KamberM. Data mining: concepts and techniques[M]. San Francisco: Morgan Kaufmann, 2001.
9 王月玥. 基于多源数据的公共交通通勤出行特征提取方法研究[D]. 北京: 北京工业大学城市交通学院, 2014.
WangYue-yue. Research on methods of extraction commuting trip characteristic based on public transportation multi-source data[D]. Beijing: College of Metropolitan Transportation, Beijing University of Technology, 2014.
10 AgrawalR, ImielinskiT, SwamiA. Database mining: a performance perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1993, 5(6): 914-925.
11 AgrawalR, ImielinskiT, SwamiA. Mining association rules between sets of items in large databases[J]. ACM SIGMOD Record, 1993, 22(2): 207-216.
12 崔研, 包志强. 关联规则挖掘综述[J]. 计算机应用研究, 2016, 33(2): 330-334.
CuiYan, BaoZhi-qiang. Survey of association rule mining[J]. Application Research of Computers, 2016, 33(2): 330-334.
13 FooteP J, StuartD G, Elmore-YalchR. Exploring customer loyalty as a transit performance measure[J]. Transportation Research Record: Journal of the Transportation Research Record, 2001(1753): 93-101.
14 曲昭伟, 姚荣涵, 王殿海. 基于最大信息熵原理的居民出行分布模型[J]. 吉林大学学报: 工学版, 2003, 33(2): 15-19.
QuZhao-wei, YaoRong-han, WangDian-hai. Inhabits trip distribution model based on maximum information entropy theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2003, 33(2): 15-19.
15 王秀枝, 安建成. 基于支持度和置信度智能优化的关联分类算法[J]. 计算机应用与软件, 2013, 30(11): 184-186, 198.
WangXiu-zhi, AnJian-cheng. Associative classification algorithm based on intelligent optimisation of support and confidence[J]. Computer Applications and Software, 2013, 30(11): 184-186, 198.
[1] Wen⁃jing WU,Run⁃chao CHEN,Hong⁃fei JIA,Qing⁃yu LUO,Di SUN. Collaborative control method of vehicles in U⁃turn zone under environment of cooperative vehicle infrastructure system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1100-1106.
[2] Zhao⁃wei QU,Zhao⁃tian PAN,Yong⁃heng CHEN,Peng⁃fei TAO,Di SUN. Car⁃following model with improving safety distance based on optimal velocity model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1092-1099.
[3] Qiao⁃wen BAI,Zhao⁃wei QU,Yong⁃heng CHEN,Shuai XIONG,Chu⁃qing TAO. Modeling on trajectories of through vehicles with an unprotected left⁃turn phase under non⁃strict priority [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 673-679.
[4] Ning⁃bo CAO,Li⁃ying ZHAO,Zhao⁃wei QU,Yong⁃heng CHEN,Qiao⁃wen BAI,Xiao⁃lei DENG. Social force model considering bi⁃direction pedestrian slipstreaming behavior [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 688-694.
[5] Lei CHEN,Jiang⁃feng WANG,Yuan⁃li GU,Xue⁃dong YAN. Multi⁃source traffic data fusion algorithm based onmind evolutionary algorithm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 705-713.
[6] Qiang TU,Lin CHENG,Fen LIN,Chao SUN. Finding shortest path considering traveler′s risk attitude [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 720-726.
[7] Chao⁃ying YIN,Chun⁃fu SHAO,Xiao⁃quan WANG. Influence of urban built environment on car commuting considering parking availability [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 714-719.
[8] CHEN Yong-heng,LIU Fang-hong,CAO Ning-bo. Analysis of conflict factors between pedestrians and channelized right turn vehicles at signalized intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1669-1676.
[9] LIU Xiang-yu, YANG Qing-fang, KUI Hai-lin. Traffic guidance cell division based on random walk algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1380-1386.
[10] LIU Zhao-hui, WANG Chao, LYU Wen-hong, GUAN Xin. Identification of data characteristics of vehicle running status parameters by nonlinear dynamic analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1405-1410.
[11] LUAN Xin, DENG Wei, CHENG Lin, CHEN Xin-yuan. Mixed Logit model for understanding travel mode choice behavior of megalopolitan residents [J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[12] CHEN Yong-heng, LIU Xin-shan, XIONG Shuai, WANG Kun-wei, SHEN Yao, YANG Shao-hui. Variable speed limit control under snow and ice conditions for urban expressway in junction bottleneck area [J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[13] WANG Zhan-zhong, LU Yue, LIU Xiao-feng, ZHAO Li-ying. Improved harmony search algorithm on truck scheduling for cross docking system [J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[14] CHEN Song, LI Xian-sheng, REN Yuan-yuan. Adaptive signal control method for intersection with hook-turn buses [J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[15] SU Shu-jie, HE Lu. Transient dynamic congestion evacuation model of pedestrian at walk traffic planning crossroads [J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!