Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 2098-2108.doi: 10.13229/j.cnki.jdxbgxb20180537

Previous Articles    

High spatial resolution remote sensing imagery segmentation based on combination of pixels and multi⁃scaleobjects using spectral clustering

Jun-jun LI1(),Jian-nong CAO2(),Bei-bei CHENG1,Juan LIAO1,Ying-ying ZHU1   

  1. 1. College of Earth Science and Resources, Chang'an University, Xi'an 710061,China
    2. College of Geological Engineering and Surveying, Chang'an University, Xi'an 710061, China
  • Received:2018-05-31 Online:2019-11-01 Published:2019-11-08
  • Contact: Jian-nong CAO E-mail:ljj19921592@163.com;caojiannong@126.com

Abstract:

An spectral clustering segmentation method for high spatial resolution (HSR) remote sensing image based on combination of pixels and multi-scale objects is proposed. The algorithm first focus on building a graph that integrates multi-scale information as well as improve similarity computation method between objects. Then, the similarity matrix is computed on the graph, and normalized cut criterion is used to similarity matrix eigen-decomposition so that the original data is mapped into the low-dimensional subspace. Finally, the clustering algorithm is used to complete the image segmentation after the selected subset of the eigenvectors. In order to prove the effectiveness of the algorithm, we choose high spatial resolution remote sensing images to conduct experiment and compare to the state-of-the-art techniques. The experimental result show that three of four experimental indexes are superior to other algorithms, which proves the effectiveness of this proposed method segmentation method.

Key words: photogrammetry and remote sensing, remote sensing image segmentation, spectral clustering, normalized cut, multi?scale objects

CLC Number: 

  • P23

Fig.1

Mean-shift segmentation results withdifferent scale parameters"

Fig.2

Graph and its cross similarity matrix"

Fig.3

Segmentation results of two algorithms"

Table 1

Results of SAS method"

指标 影像1 影像2 影像3 影像4 影像5 影像6 影像7 影像8 影像9 影像10
PRI 0.905 7 0.967 00 0.975 1 0.972 4 0.975 6 0.943 0 0.833 0 0.952 5 0.967 1 0.958 0
GCE 2.340 9 1.564 10 2.153 5 2.238 8 1.976 0 1.926 0 2.269 2 2.267 2 1.473 0 1.825 7
VoI 0.272 3 0.234 90 0.333 0 0.351 1 0.302 4 0.273 2 0.230 3 0.312 1 0.207 7 0.250 4
BDE 6.371 3 2.431 90 5.868 7 2.629 0 3.284 1 4.342 8 4.211 1 4.955 6 2.370 0 3.263 2

Table 2

Results of proposed method"

指标 影像1 影像2 影像3 影像4 影像5 影像6 影像7 影像8 影像9 影像10
PRI 0.903 4 0.964 4 0.979 5 0.977 7 0.966 2 0.943 6 0.837 7 0.961 5 0.969 5 0.936 8
GCE 2.527 5 1.688 1 2.203 2 2.284 3 1.900 7 1.968 5 2.395 8 2.330 2 1.500 1 2.286 0
VoI 0.325 4 0.239 0 0.357 1 0.380 8 0.305 5 0.312 0 0.296 0 0.352 2 0.214 1 0.354 6
BDE 7.581 51 2.701 3 6.107 2 2.508 1 3.271 2 4.786 3 4.661 5 4.874 3 2.367 3 3.793 9

Fig.4

Mean value of two algorithms"

Fig.5

Segmentation results of two algorithm"

1 Moser G , Serpico S B , Benediktsson J A . Land-Cover mapping by markov modeling of spatial–contextual information in very-high-resolution remote sensing images[J]. Proceedings of the IEEE,2013,101(3):631-651.
2 Liu H , Zhao F , Jiao L . Fuzzy spectral clustering with robust spatial information for image segmentation[J]. Applied Soft Computing,2012,12(11):3636-3647.
3 Ng A Y , Jordan M I , Weiss Y . On spectral clustering: analysis and an algorithm[C]∥Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic,Vancouver, Canada,2001:849-856.
4 Luxburg U V . A tutorial on spectral clustering[J]. Statistics and Computing,2007,17(4):395-416.
5 Shi J B , Malik J . Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
6 袁永华,李玉,赵雪梅 . 基于谱聚类的高分辨率全色遥感影像分割[J]. 仪器仪表学报,2016,37(7): 1656-1664.
6 Yuan Yong-hua , Li Yu , Zhao Xue-mei . High-resolution panchromatic remote sensing image segmentation based on spectral clustering[J]. Chinese Journal of Scientific Instrument,2016,37(7):1656-1664.
7 张向荣,骞晓雪,焦李成 . 基于免疫谱聚类的图像分割[J]. 软件学报,2010,21(9):2196-2205.
7 Zhang Xiang-rong , Qian Xiao-xue , Jiao Li-cheng . Immune spectral clustering algorithm for image segmentation[J]. Journal of Software,2010,21(9): 2196-2205.
8 董安国,李佳逊,张蓓,等 . 基于谱聚类和稀疏表示的高光谱图像分类算法[J]. 光学学报,2017,37(8): 363-370.
8 Dong An-guo , Li Jia-xun , Zhang Bei ,et al . Hyperspectral image classification algorithm based on spectral clustering and sparse representation[J]. Acta Optica Sinica,2017,37(8):363-370.
9 Cour T , Benezit F , Shi J . Spectral segmentation with multiscale graph decomposition[C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005:1124-1131.
10 刘仲民,李战明,李博皓,等 . 基于稀疏矩阵的谱聚类图像分割算法[J].吉林大学学报:工学版,2017,47(4):1308-1313.
10 Liu Zhong-min , Li Zhan-ming , Li Bo-hao , et al . Spectral clustering image segmentation based on sparse matrix[J]. Journal of Jilin University(Engineering and Technology Edition),2017,47(4):1308-1313.
11 Gui Y , Bai X , Li Z , et al . Color image segmentation using mean shift and improved spectral clustering[C]∥2012 12th International Conference on Control Automation Robotics & Vision, Guangzhou, China,2012:1386-1391.
12 Cheng H D , Jiang X H , Sun Y , et al . Color image segmentation: advances and prospects[J]. Pattern Recognition,2001,34(12):2259-2281.
13 Comaniciu D , Meer P . Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
14 宋熙煜,周利莉,李中国,等 . 图像分割中的超像素方法研究综述[J]. 中国图象图形学报,2015,20(5): 599-608.
14 Song Xi-yu , Zhou Li-li , Li Zhong-guo , et al . Review on superpixel methods in image segmentation[J]. Journal of Image and Graphics,2015,20(5):599-608.
15 Zha H Y , He X F , Ding C , et al . Bipartite graph partitioning and data clustering[DB/OL].[2018-05-12].https:∥arxiv.org/pdf/cs/0108018.pdf.
16 Dhillon I S . Co-clustering documents and words using bipartite spectral graph partitioning[C]∥Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, 2001: 269-274.
17 Li Z , Wu X M , Chang S F . Segmentation using superpixels: a bipartite graph partitioning approach[C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012:789-796.
18 Kim T H , Lee K M , Lee S U . Learning full pairwise affinities for spectral segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(7):1690-1703.
19 Kohli P , Ladicky L , Torr P H S . Robust higher order potentials for enforcing label consistency[J/OL]. [2018-05-16].http:∥.
20 Takamura S , Kobayashi N . Practical extension to CIELUV color space to improve uniformity[J]. Proceedings International Conference on Image Processing,2002,2(2):393-396.
21 Zhong Yan-fei , Gao Rong-rong , Zhang Liang-pei . Multiscale and multifeature normalized cut segmentation for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(10):6061-6075.
22 An V , Oraintara S . A study of relative phase in complex wavelet domain: property, statistics and applications in texture image retrieval and segmentation[J]. Signal Processing Image Communication,2010,25(1):28-46.
23 Wu Z , Leahy R . An optimal graph theoretic approach to data clustering: theory and its application to image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1101-1113.
24 Hagen L , Kahng A B . New spectral methods for ratio cut partitioning and clustering[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2002,11(9):1074-1085.
25 Pothen A , Simon H D , Liou K P . Partitioning sparse matrices with eigenvectors of graphs[J]. SIAM Journal on Matrix Analysis and Applications,1990,11(3):430-452.
26 Yu S X , Shi J . Multiclass spectral clustering[C]∥Proceedings Ninth IEEE International Conference on Computer Vision, Nice, France, 2003: 313-319.
27 Unnikrishnan R , Pantofaru C , Hebert M . Toward objective evaluation of image segmentation algorithms[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2007,29(6):929-944.
28 Martin D , Fowlkes C , Tal D , et al . A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]∥Eighth IEEE International Conference on Computer Vision, Canada,2001:37-42.
29 Marina M . Comparing clusterings: an axiomatic view[C]∥International Conference, Germany,2005:577-584.
30 Freixenet J , Mu?oz X , Raba D , et al . Yet another survey on image segmentation: region and boundary information integration[C]∥7th European Conference on Computer Vision, Copenhagen, Denmark, 2002: 408-422.
[1] LIU Zhong-min, LI Zhan-ming, LI Bo-hao, HU Wen-jin. Spectral clustering image segmentation based on sparse matrix [J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[2] LI Hui-hui, HUA Li, YANG Ning, LIU Kun. Multi-target association algorithm for remote sensing images based on MSA features and simulated annealing optimization [J]. 吉林大学学报(工学版), 2015, 45(4): 1353-1359.
[3] JIANG Chao, GENG Ze-xun, LIU Li-yong, PAN Ying-feng. Maximum likelihood image restoration combined with image denoising [J]. 吉林大学学报(工学版), 2015, 45(4): 1360-1366.
[4] WANG Jing-meng, ZHANG Ai-wu, ZHAO Ning-ning, MENG Xian-gang. Influence of tilting angle on tilting sampling aliasing and relationship between aliasing and resolution [J]. 吉林大学学报(工学版), 2015, 45(3): 953-960.
[5] CAO Jian-nong, GUO Jia, WANG Bei, DONG Yu-wei, WANG Ping-lu. Multi-scale method of urban tree canopy clustering recognition in high-resolution images [J]. 吉林大学学报(工学版), 2014, 44(4): 1215-1224.
[6] QU Lin,ZHOU Fan,CHEN Yao-wu. Trajectory lcassification based on Hausdorff distance for visual surveillance system [J]. 吉林大学学报(工学版), 2009, 39(06): 1618-1624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Tian-ling, Li Jun, Wu Jun-hua, Wang Zhan-feng. Synergic effects of EGR and VNT on exhaust emissions from turbocharged diesel engine[J]. 吉林大学学报(工学版), 2006, 36(04): 493 -496 .
[2] Li Chun-liang,Cheng Yong-chun . Pre-tension control of reinforced concrete beam strengthened with CFRP sheets[J]. 吉林大学学报(工学版), 2008, 38(02): 393 -0398 .
[3] Yuan Rui, Ma Xu, Ma Cheng-lin, Wang Wei, Qiao Xin, Yang Dan. Virtual manufacturing and motion simulation of precision planter unit[J]. 吉林大学学报(工学版), 2006, 36(04): 523 -528 .
[4] XU Zhixing , CONG Wenlong , TANG Kehong. Computeraided Selective Assembly Method[J]. 吉林大学学报(工学版), 2005, 35(06): 613 -0616 .
[5] Li Zhaohui,, Lian Jianshe, Li Guangyu. Effect of MRCM on solgel synthesis of nanograde NiO/Ce0.8Gd0.2O1.9 compound powders[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 79 -0083 .
[6] WU Jian-ying1,2, CAI Jian1,2, HE Jun1, CHEN Qing-jun1,2 . Load capacity and stiffness of beamcolumn joint strengthened by plate rings with irregularly arranged double level beams[J]. 吉林大学学报(工学版), 2008, 38(04): 829 -834 .
[7] Wang Tie-cheng,, Dong Chun-min,Wang Song. Experimental study on diagonal crack widths of reinforced concrete T-Beams with highstrength stirrup[J]. 吉林大学学报(工学版), 2006, 36(04): 451 -455 .
[8] WANG Wen-ge , WANG Xue-yi , ZHENG Lian-zhu. New Method for Calculating Fatigue Strength Reliability[J]. 吉林大学学报(工学版), 2005, 35(06): 665 -0668 .
[9] Zhang Yu-ting,Liao Jian-xin,Liu Yan,Zhang Tie-ying. Mechanism of integration between PIM and VPMN[J]. 吉林大学学报(工学版), 2006, 36(04): 554 -559 .
[10] Li Hai-bo, Liu Mei, Xu Ying, Xu Shi-chong, Yu Wen-xue . Structure and magnetic properties of Fe/Al2O3 nanocomposites[J]. 吉林大学学报(工学版), 2007, 37(04): 800 -803 .