Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (1): 1-18.doi: 10.13229/j.cnki.jdxbgxb20190264
Yi-bin LI1(),Jia-min GUO1,Qin ZHANG1,2()
CLC Number:
1 | Cao Y, Li B Z, Li Q N, et al. Kinect‐based gait analyses of patients with Parkinson's disease, patients with stroke with hemiplegia, and healthy adults[J]. CNS Neuroscience & Therapeutics, 2017, 23(5): 447-449. |
2 | Eltoukhy M, Kuenze C, Oh J, et al. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson's disease[J]. Medical Engineering & Physics, 2017, 44: 1-7. |
3 | Wang T, Wang Z, Zhang D, et al. Recognizing Parkinsonian gait pattern by exploiting fine-grained movement function features[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2016, 8(1): 1-22. |
4 | Mileti I, Germanotta M, Di Sipio E, et al. Measuring Gait Quality in Parkinson’s Disease through Real-Time Gait Phase Recognition[J]. Sensors, 2018, 18(3): 919. |
5 | Cui C, Bian G B, Hou Z G, et al. Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(4): 856-864. |
6 | Benson L C, Clermont C A, Bošnjak E, et al. The use of wearable devices for walking and running gait analysis outside of the lab: a systematic review[J]. Gait & Posture, 2018, 63: 124-138. |
7 | Simon S R. Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems[J]. Journal of Biomechanics, 2004, 37(12): 1869-1880. |
8 | Figueiredo J, Santos C P, Moreno J C. Automatic recognition of gait patterns in human motor disorders using machine learning: a review[J]. Medical Engineering & Physics, 2018,53:1-12. |
9 | Huang P S, Harris C J, Nixon M S. Recognising humans by gait via parametric canonical space[J]. Artificial Intelligence in Engineering, 1999, 13(4): 359-366. |
10 | Collins R T, Gross R, Shi J. Silhouette-based human identification from body shape and gait[C]∥Proceedings of Fifth IEEE International Conference on. Automatic Face and Gesture Recognition, Washington, DC, USA, 2002: 366-371. |
11 | Han J, Bhanu B. Individual recognition using gait energy image[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006(2): 316-322. |
12 | Lam T H W, Lee R S T. A new representation for human gait recognition: motion silhouettes image (MSI)[C]∥International Conference on Biometrics. Berlin: Springer, 2006: 612-618. |
13 | Prakash C, Kumar R, Mittal N. Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges[J]. Artificial Intelligence Review, 2018, 49(1): 1-40. |
14 | Yang C C, Yeh-Liang H. A review of accelerometry-based wearable motion detectors for physical activity monitoring[J]. Sensors, 2010, 10(8): 7772-7788. |
15 | 埃里克·F·布赖恩. 用加速度计感测转向轴倾斜角和外倾角[P]. 中国:1768246 A,2006-08-17. |
16 | Büsching F, Kulau U, Gietzelt M, et al. Comparison and validation of capacitive accelerometers for health care applications[J]. Computer Methods & Programs in Biomedicine, 2012, 106(2): 79-88. |
17 | Bouten C V C, Koekkoek K T M, Verduin M, et al. A triaxial aceler-ometer and portable data processing unit for the assessment of daily physical activity[J]. IEEE Transactions on Bio-Medical Engineering, 1997, 44(3):136-147. |
18 | Godfrey A, Del D S, Barry G, et al. Within trial validation and reliability of a single tri-axial accelerometer for gait assessment[C]∥The 36th Annual International Conference of IEEE Engineering in Medicine and Biology Society,Chicago,IL,USA,2014:5892-5895. |
19 | Din S D, Godfrey A, Rochester L. Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson's disease: toward clinical and at home use[J]. IEEE J Biomed Health Inform, 2016, 20(3):838-847. |
20 | Saunders J B, Inman V T, Eberhart H D. The major determinants in normal and pathological gait[J]. The Journal of Bone and Joint Surgery, 1953, 35(3): 543-558. |
21 | Williams G, Doughty K, Cameron K, et al. A smart fall and activity monitor for telecare applications[C]∥Proceedings of the of International Conference on Engineering in Medicine and Biology Society, Montreal, Que, Canada, 1998:1151-1154. |
22 | Weijer R, Hoozemans M, Van J D, et al. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults[J]. Gait & Posture, 2018,62:475-479. |
23 | Steeves J A, Tyo B, Connolly C, et al. Validity and Reliability of the Omron HJ-303 GoSmart tri-axis accelerometer-based pedometer: 2023[J]. Medicine & Science in Sports & Exercise, 2010, 42(7):1014-1020. |
24 | Sotoperezdecelis E, Kim H, Rojocastillo M P, et al. A pilot study of an accelerometer-equipped smartphone to monitor older adults with cancer receiving chemotherapy in Mexico[J]. Journal of Geriatric Oncology, 2017, 9(2):145-151. |
25 | 侯向锋, 刘蓉, 周兆丰. 加速度传感器MMA7260在步态特征提取中的应用[J]. 传感技术学报, 2007, 20(3):507-511. |
Hou Xiang-feng, Liu Rong, Zhou Zhao-feng. Application of accelerometer MMA7260 in the gait feature extraction[J]. Chinese Journal of Sensors and Actuators, 2007, 20(3):507-511. | |
26 | 刘蓉, 黄璐, 李少伟,等. 基于步态加速度的步态分析研究[J]. 传感技术学报, 2009, 22(6):893-896. |
Liu Rong, Huang Lu, Li Shao-wei, et al. Gait analysis based on gait acceleration[J]. Chinese Journal of Sensors and Actuators, 2009, 22(6):893-896. | |
27 | Zhang Y, Pan G, Jia K, et al. Accelerometer-based gait recognition by sparse representation of signature points with clusters[J]. IEEE Transactions on Cybernetics, 2014, 45(9):1864-1875. |
28 | Medda A, Vaughan A, Liu B, et al. Activity recognition using statistical gait parameters from a single accelerometer[C]∥Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,2014:189-193. |
29 | Manupibul U, Charoensuk W, Kaimuk P. Design and development of SMART insole system for plantar pressure measurement in imbalance human body and heavy activities[C]∥International Conference on Biomedical Engineering and Biotechnology, Shanghai,China, 2015:1-5. |
30 | Kong K, Tomizuka M. A gait monitoring system based on air pressure sensors embedded in a shoe[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(3):358-370. |
31 | Redd C B, Bamberg S J M. A wireless sensory feedback device for real-time gait feedback and training[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(3):425-433. |
32 | Lin F, Wang A, Zhuang Y, et al. Smart insole: a wearable sensor device for unobtrusive gait monitoring in daily life[J]. IEEE Transactions on Industrial Informatics, 2016, 12(6): 2281-2291. |
33 | Creaby M W, May K, Bennell K L. Insole effects on impact loading during walking[J]. Ergonomics, 2011, 54(7): 665-671. |
34 | Chen D, Cai Y, Huang M C. Customizable pressure sensor array: design and evaluation[J]. IEEE Sensors Journal, 2018, 18(15):6337-6344. |
35 | Qi Y, Soh C B, Gunawan E, et al. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network[J]. IEEE Journal of Biomedical & Health Informatics, 2015, 19(2): 446-452. |
36 | Qi Y, Soh C B, Gunawan E, et al. Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2016, 24(1):88-97. |
37 | Wearing S C, Reed L, Hooper S L, et al. Running shoes increase achilles tendon load in walking: an acoustic propagation study[J]. Med Sci Sports Exerc, 2014, 46(8):1604-1609. |
38 | Wulf M, Wearing S C, Hooper S L, et al. achilles tendon loading patterns during barefoot walking and slow running on a treadmill: An ultrasonic propagation study[J]. Scand J Med Sci Sports, 2016, 25(6):868-875. |
39 | Little J, Boyd J. Recognizing people by their gait: the shape of motion[J]. Videre: Journal of Computer Vision Research, 1998, 1(2): 1-32. |
40 | Tanawongsuwan R, Bobick A. Gait recognition from time-normalized joint-angle trajectories in the walking plane[C]∥IEEE Computer Society Conference on Computer Vision & Pattern Recognition, Kauai, HI, USA,2001:726-731. |
41 | Park Steve, Amos Y, Daniel S, et al. Human identification at a distance at gatech[DB/OL][2018-8-25]. https:∥www.cc.gatech.edu/cpl/projects/hid/ |
42 | Gross R, Shi J. The cmu motion of body (mobo) database[R]. Pittsburgh: Robotics Institute, Carnegie Mellon University, 2001. |
43 | Sarkar S, Phillips P J, Liu Z, et al. The humanid gait challenge problem: data sets, performance, and analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 162-177. |
44 | Wang L, Tan T, Ning H, et al. Silhouette analysis-based gait recognition for human identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1505-1518. |
45 | Yu S, Tan D, Tan T. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[C]∥The 18th International Conference on Pattern Recognition, Hong Kong, China, 2006: 441-444. |
46 | Tan D, Huang K, Yu S, et al. Uniprojective features for gait recognition[C]∥International Conference on Biometrics. Berlin: Springer, 2007: 673-682. |
47 | Vicon Vantage Reference[M/OL]. [2019-02-28]. https:∥. |
48 | Go Further With Vicon MX T-Series[M/OL].[2019-02-28].https:∥www.vicon.com/downloads/documentation/go-further-with-vicon-mx-t-series,2018. |
49 | Pfister A, West A M, Bronner S, et al. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis[J]. Journal of medical Engineering & Technology, 2014, 38(5): 274-280. |
50 | Eltoukhy M, Oh J, Kuenze C, et al. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment[J]. Gait & Posture, 2017, 51: 77-83. |
51 | Eltoukhy M, Kuenze C, Oh J, et al. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson's disease[J]. Medical Engineering &Physics, 2017, 44: 1-7. |
52 | Tanaka R, Takimoto H, Yamasaki T, et al. Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment[J]. Journal of Biomechanics, 2018, 71: 281-285. |
53 | Tanawongsuwan R, Bobick A. Gait recognition from time-normalized joint-angle trajectories in the walking plane[C]∥Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 2001. |
54 | Seely R D, Samangooei S, Middleton L, et al. The university of southampton multi-biometric tunnel and introducing a novel 3d gait dataset[C]∥IEEE Second International Conference on Biometrics: Theory, Applications and Systems,Arlington, VA, USA,2008. |
55 | Shutler J D, Grant M G, Nixon M S, et al. On a Large Sequence-Based Human Gait Database[M].Berlin: Springer, 2004:66-71. |
56 | Department of Intelligent Media, The Institute of Scientific and Industrial Research, University Osaka. OU-ISIR biometric database [DB/OL]. [2019-2-28]. http:∥www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitLP.html,2018. |
57 | Yu S, Wang Q, Huang Y. A large RGB-D gait dataset and the baseline algorithm[C]∥The 8th Chinese Conference on Biometric Recognition,Jinan,China,2013: 417-424. |
58 | Andersson V O, de Araújo R M. Person identification using anthropometric and gait data from kinect sensor[C]∥AAAI, Austin, Texas, USA, 2015: 425-431. |
59 | PhysioBank databases[DB/OL]. [2019-2-28]. https:∥physionet.org/physiobank/database/#gait. |
60 | Cunado D, Nixon M S, Carter J N. Using gait as a biometric, via phase-weighted magnitude spectra[C]∥LNCS, 1997, 1206: 93-102. |
61 | Okusa K, Kamakura T. Human gait modeling and statistical registration for the frontal view gait data with application to the normal/abnormal gait analysis[C]//IAENG Transactions on Engineering Technologies. Dordrecht:Springer, 2014: 525-539. |
62 | Guo Y, Xu G, Tsuji S. Understanding human motion patterns[C]∥Proceedings of the 12th IAPR International. Conference on Pattern Recognition, Jerusalem, Israel, 1994: 325-329. |
63 | Rohr K. Towards model-based recognition of human movements in image sequences[J]. CVGIP-Image Understanding, 1994, 59(1): 94-115. |
64 | Howe N R, Leventon M E, Freeman W T. Bayesian reconstruction of 3d human motion from single-camera video[C]∥Advances in Neural Information Processing Systems,Cambridge, MA, USA, 2000: 820-826. |
65 | Human Interface Guidelines[M/OL].[2019-3-3]. http: Springer,. |
66 | Gordon Rachel. Artificial intelligence senses people through walls[DB/OL]. [2019-2-28]. https:∥. |
67 | Sutherland D. The development of mature gait[J]. Gait & Posture, 1997, 6(2): 163-170. |
68 | Nguyen T N, Huynh H H, Meunier J. Skeleton-based abnormal gait detection[J]. Sensors, 2016, 16(11): 1792. |
69 | Glowinski S, Blazejewski A, Krzyzynski T. Human gait feature detection using inertial sensors wavelets[M]∥ Glowinski S,Blazejewski A,Krzyzynski T,ed. Wearable Robotics: Challenges and Trends, Springer, Cham, 2017: 397-401. |
70 | Cahill-Rowley K, Rose J. Temporal-spatial gait parameters and neurodevelopment in very-low-birth-weight preterm toddlers at 18-22 months[J]. Gait & Posture, 2016, 45: 83-89. |
71 | Ochi F, Esquenazi A, Hirai B, et al. Temporal—spatial feature of gait after traumatic brain injury[J]. The Journal of Head Trauma Rehabilitation, 1999, 14(2): 105-115. |
72 | Esquenazi A, Ofluoglu D, Hirai B, et al. The effect of an ankle-foot orthosis on temporal spatial parameters and asymmetry of gait in hemiparetic patients[J]. PM&R, 2009, 1(11): 1014-1018. |
73 | 张勤, 李岳炀, 李贻斌,等. 基于Kinect的学步期幼儿自然步态特征提取[J]. 自动化学报, 2018, 44(6): 1096-1106. |
Zhang Qin, Li Yue-yang, Li Yi-bin, et al. Extraction of toddler's natural gait based on kinect[J]. Acta Automatica Sinica, 2018, 44(6):1096-1106. | |
74 | Kamruzzaman J, Begg R K. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2479-2490. |
75 | Chen S W, Lin S H, Liao L D, et al. Quantification and recognition of parkinsonian gait from monocular video imaging using kernel-based principal component analysis[J]. Biomedical Engineering Online, 2011, 10(1): 99. |
76 | Qi Y, Soh C B, Gunawan E, et al. Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system[J]. Sensors, 2014, 14(8): 15434-15457. |
77 | Dempster W T, Gaughran G R L. Properties of body segments based on size and weight[J]. American Journal of Anatomy, 1967, 120(1): 33-54. |
78 | Ober D B, Neugebauer S P, Sallee P A. Training and feature-reduction techniques for human identification using anthropometry[C]∥Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), Washington, DC, USA, 2010: 1-8. |
79 | Johnson A Y, Bobick A F. A multi-view method for gait recognition using static body parameters[C]∥International Conference on Audio-and Video-Based Biometric Person Authentication, Washington, DC, US, 2001: 301-311. |
80 | 贲晛烨, 徐森, 王科俊. 行人步态的特征表达及识别综述[J]. 模式识别与人工智能, 2012(1): 71-81. |
Xian-ye Ben, Xu Sen, Wang Ke-jun. Review on pedestrian gait feature expression and recognition[J]. Pattern Recognition and Artificial Intelligence, 2012(1): 71-81. | |
81 | Wang C, Zhang J, Pu J, et al. Chrono-gait image: a novel temporal template for gait recognition[C]∥European Conference on Computer Vision, Heraklion, Crete, Greece, 2010: 257-270. |
82 | Ozen H, Boulgouris N V, Swash R. Gait recognition based on 3D holoscopic gait energy image[C]∥International Conference on 3D Immersion (IC3D), Brussels, Belgium,2017: 1-4. |
83 | He Y, Zhang J, Shan H, et al. Multi-task GANs for view-specific feature learning in gait recognition[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(1): 102-113. |
84 | Lee H, Hong S, Nizami I F, et al. A noise robust gait representation: motion energy image[J]. International Journal of Control, Automation and Systems, 2009, 7(4): 638-643. |
85 | Nizami I F, Hong S, Lee H, et al. Automatic gait recognition based on probabilistic approach[J]. International Journal of Imaging Systems and Technology, 2010, 20(4): 400-408. |
86 | Liu Y, Collins R, Tsin Y. Gait sequence analysis using frieze patterns[C]∥European Conference on Computer Vision, Copenhagen, Denmark, 2002: 657-671. |
87 | Lee S, Liu Y, Collins R. Shape variation-based frieze pattern for robust gait recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2007: 1-8. |
88 | Bashir K, Xiang T, Gong S. Gait recognition using gait entropy image[C]∥The 3rd International Conference on Imaging for Crime Detection and Prevention, London ,UK, 2009. |
89 | Liu Z, Yang G. Use wavelet transform to gait recognition[C]∥International Congress on Image & Signal Processing, Shanghai, China, 2016. |
90 | Wang H, Fan Y, Fang B, et al. Generalized linear discriminant analysis based on Euclidean norm for gait recognition[J]. International Journal of Machine Learning & Cybernetics, 2018, 9(4):569-576. |
91 | Zhang H, Ye C. RGB-D Camera Based Walking Pattern Recognition by Support Vector Machines for a Smart Rollator[J]. International Journal of Intelligent Robotics & Applications, 2017, 1(1):32-41. |
92 | Wang X, Wang J, Yan K. Gait recognition based on Gabor wavelets and (2D) 2 PCA[J]. Multimedia Tools & Applications, 2017(3):1-17. |
93 | Yu S, Chen H, Wang Q, et al. Invariant feature extraction for gait recognition using only one uniform model[J]. Neurocomputing, 2017, 239(C):81-93. |
94 | Yeoh T W, Aguirre H E, Tanaka K. Stacked progressive auto-encoders for clothing-invariant gait recognition[C]∥International Conference on Computer Analysis of Images and Patterns, Ystad, Sweden, 2017: 151-161. |
95 | Wang Y, Chen Y, Bhuiyan M Z A, et al. Gait-based Human identification using acoustic sensor and deep neural network[J]. Future Generation Computer Systems, 2018, 86: 1228-1237. |
96 | Shiraga K, Makihara Y, Muramatsu D, et al. GEINet: view-invariant gait recognition using a convolutional neural network[C]∥International Conference on Biometrics, Halmstad, Sweden, 2016:1-8. |
97 | Chen Q, Wang Y, Liu Z, et al. Feature map pooling for cross-view gait recognition based on silhouette sequence images[C]//IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 2017:54-61. |
98 | Wu Z, Huang Y, Wang L, et al. A comprehensive study on cross-view gait based human identification with deep CNNs[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(2):209-226. |
99 | Chen C, Liang J, Zhao H, et al. Gait recognition using hidden Markova model[C]∥International Conference on Natural Computation, Xi’an,China, 2006: 399-407. |
100 | Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]∥Advances in Neural Information Processing Systems, Montreal, QC, Canada, 2014: 2672-2680. |
101 | Yu S, Chen H, Reyes E B G, et al. Gait GAN: invariant gait feature extraction using generative adversarial networks[C]∥CVPR Workshops, Honolulu, HI, USA, 2017: 532-539. |
102 | Das D. Human gait classification using combined HMM & SVM hybrid classifier[C]∥International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV), Shillong, India, 2015: 169-174. |
103 | Takemura N, Makihara Y, Muramatsu D, et al. On input/output architectures for convolutional neural network-based cross-view gait recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology,2019,29(9): 2708-2719. |
104 | Banaie M, Pooyan M, Mikaili M. Introduction and application of an automatic gait recognition method to diagnose movement disorders that arose of similar causes[J]. Expert Systems with Applications, 2011, 38(6): 7359-7363. |
105 | Pogorelc B, Bosnić Z, Gams M. Automatic recognition of gait-related health problems in the elderly using machine learning[J]. Multimedia Tools and Applications, 2012, 58(2): 333-354. |
[1] | Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667. |
[2] | Wan-fu GAO,Ping ZHANG,Liang HU. Nonlinear feature selection method based on dynamic change of selected features [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1293-1300. |
[3] | Dan⁃tong OUYANG,Jun XIAO,Yu⁃xin YE. Distant supervision for relation extraction with weakconstraints of entity pairs [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 912-919. |
[4] | GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585. |
[5] | DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577. |
[6] | WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205. |
[7] | ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213. |
[8] | LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873. |
[9] | LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881. |
[10] | HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865. |
[11] | WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532. |
[12] | LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544. |
[13] | YANG Xin, XIA Si-jun, LIU Dong-xue, FEI Shu-min, HU Yin-ji. Target tracking based on improved accelerated gradient under tracking-learning-detection framework [J]. 吉林大学学报(工学版), 2018, 48(2): 533-538. |
[14] | LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611. |
[15] | QU Hui-yan, ZHAO Wei, QIN Ai-hong. A fast collision detection algorithm based on optimization operator [J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603. |
|