Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1169-1181.doi: 10.13229/j.cnki.jdxbgxb20200382

Previous Articles    

Research progress of image dehazing algorithms

Hua-wei JIANG1,2(),Zhen YANG1,2,3,Xin ZHANG2,Qian-lin DONG1,2   

  1. 1.Key Laboratory of Grain Information Processing and Control Ministry of Education,Henan University of Technology,Zhengzhou 450001,China
    2.College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China
    3.State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines,Anhui University of Science and Technology,Huainan 232001,China
  • Received:2020-05-30 Online:2021-07-01 Published:2021-07-14

Abstract:

According to the algorithm processing method, image dehazing technology can be divided into two categories. One is image enhancement algorithm, which involves histogram equalization, wavelet transform and Retinex algorithm based on color constancy theory. The other is the image restoration and defogging algorithm, which mainly includes the traditional multi-image restoration based on the characteristics of optical polarization and the single image restoration based on a priori assumption, and the emerging image restoration algorithm based on deep learning. In order to better study the image dehazing algorithm in the future, the main development process of image dehazing techniques was reviewed in this paper, the existing problems for the study on image dehazing algorithm was analyzed, and the development trend was tried to explore.

Key words: information processing technology, fog-degraded image, image dehazing, image enhancement, image restoration

CLC Number: 

  • TP391.4

Fig.1

Comparison of different image histograms"

Fig.2

Result comparison of histogram equalization algorithm"

Fig.3

Comparison of SSR and MSR results"

Fig.4

Processing results of image restoration method based on dark channel prior"

Fig.5

Results of typical image defogging algorithm"

Table 1

Objective evaluation of typical image defogging algorithms"

图像去雾算法运算时间/serˉσ
全局直方图均衡化0.002 40.153 432.7390.211 32
局部直方图均衡化0.024 20.192 853.6540.200 98
单尺度Retinex0.044 30.227 375.2560.219 67
多尺度Retinex0.103 90.345 973.6610.194 03
暗通道先验算法0.135 80.411 582.8250.127 57
中值滤波法0.072 40.398 813.0880.199 25
DehazeNet0.891 30.415 392.4610.115 39
DANet0.338 10.399 262.5230.105 93

Table 2

Comparison of typical image defogging algorithms"

图像去雾算法优点缺点适用情况参考来源
全局直方图均衡化算法简单、运算时间短、图像灰度离散程度高合并较多灰度级,细节信息丢失,不适合景深多变的图像单一景深图像Jain57,1989
局部直方图均衡化整体对比度较强,能够保留图像细节信息运算量大,存在局部块状效应静态浓雾图像

Kim58,1997;

江巨浪等10,2006

小波变换可去除光照不均产生的黑斑,能较好地保持图像的原貌占用较大的运算空间薄雾、水下图像Mallat59,1989;吴颖谦14,2003
局部单尺度Retinex(SSR)弥补边缘曲线增强的局限性产生光晕现象,整体亮度不足薄雾图像Jobson等19,1997
局部多尺度Retinex(MSR)相比SSR,图像处理后亮度得到提升色彩饱和度不够,有轻度失真环境亮度均匀的图像汪荣贵等24,2010
带色彩恢复的多尺度Retinex(MSRCR)性能比较稳定,细节信息完善算法复杂度增加,运算时间长色彩失真的静态图像Rahman等60,1997
基于不同偏振度的多幅图像复原能够消除偏振光的影响依赖环境光的偏振状态和偏振度薄雾图像,光线较好的图像Schechner等30,2001;Namer等31,2005
暗通道先验能够较大限度地保留图像细节信息对大气光亮度估计较差,易造成细节缺失景深连续且无遮挡的图像He等35,2011
中值滤波法时间复杂度低,去雾性能高物体边缘易产生块状效应主体边缘简洁明确的图像胡研等61,2018
端到端去雾DehazeNet利用神经网络高效估计退化模型参数经特征提取等步骤,运算速度有限制无杂乱纹理的自然场景图像Cai等46,2016
DANet基于合成域和真实域,高效恢复雾图像算法复杂度相对于其他神经网络算法较高非极端环境的图像Shao等55,2020
1 Celik Turgay. Spatial entropy-based global and local image contrast enhancement[J].IEEE Transactions on Image Processing, 2014, 23(12): 5298-5308.
2 Oakley J P, Bu H. Correction of simple contrast loss in color images[J].IEEE Transactions on Image Processing, 2007, 16(2):511-522.
3 胡琼,汪荣贵,胡韦伟,等.基于直方图分割的彩色图像增强算法[J].中国图象图形学报, 2009, 14(9): 1776-1781.
Hu Qiong, Wang Rong-gui, Hu Wei-wei, et al. Color image enhancement based on histogram segmentation[J]. Journal of Image and Graphics, 2009, 14(9):1776-1781.
4 张煜东,王水花,周振宇,等.基于HVS与PCNN的彩色图像增强[J].中国科学:信息科学, 2010, 40(7):909-924.
Zhang Yu-dong, Wang Shui-hua, Zhou Zhen-yu, et al. Color image enhancement based on HVS and PCNN[J]. Science China(Information Sciences), 2010, 40(7): 909-924.
5 吴成茂.直方图均衡化的数学模型研究[J].电子学报, 2013, 41(3):598-602.
Wu Cheng-mao. Studies on mathematical model of histogram equalization[J]. ACTA Electronica Sinica, 2013, 41(3):598-602.
6 Lee J S. Digital image enhancement and noise filtering by use of local statistics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(2):165-168.
7 Kim T K, Paik J K, Kang B S. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering[J]. IEEE Transactions on Consumer Electronics, 1998, 44(1):82-87.
8 Kim J Y, Kim L S, Hwang S H. An advanced contrast enhancement using partially overlapped sub-block histogram equalization[J].IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(4):475-484.
9 曹聚亮,吕海宝,李冠章.基于自适应局部灰度修正的直方图均衡算法[J].红外与激光工程, 2004, 33(5): 513-515, 523.
Cao Ju-liang, Lv Hai-bao, Li Guan-zhang. Histogram equalization algorithm base on adaptive gray level modification [J]. Infrared and Laser Engineering, 2004, 33(5): 513-515, 523.
10 江巨浪,张佑生,薛峰,等.保持图像亮度的局部直方图均衡算法[J].电子学报, 2006, 34(5): 861-866.
Jiang Ju-lang, Zhang You-sheng, Xue Feng, et al. Local histogram equalization with brightness preservation[J].Acta Electronica Sinica, 2006,34(5):861-866.
11 陈文飞,廖斌,许雪峰,等.基于Piecewise直方图均衡化的图像增强方法[J].通信学报, 2011, 32(9): 153-160.
Chen Wen-fei, Liao Bin, Xu Xue-feng, et al. Piecewise histogram equalization based image enhancement[J]. Journal on Communications, 2011, 32(9):153-160.
12 倪林.小波变换与图像处理[M].合肥:中国科学技术大学出版社, 2010.
13 陶观群,李大鹏,陆光华.基于小波变换不同融合规则的图像融合研究[J].红外与激光工程, 2003, 32(2): 173-176, 202.
Tao Guan-qun, Li Da-peng, Lu Guang-hua. Study on image fusion based on different fusion rules of wavelet transform[J]. Infrared and Laser Engineering, 2003, 32(2):173-176, 202.
14 吴颖谦,施鹏飞.基于小波变换的低对比度图像增强[J].红外与激光工程, 2003, 32(1):4-7.
Wu Ying-qian, Shi Peng-fei. Approach on image contrast enhancement based on wavelet transform[J]. Infrared and Laser Engineering, 2003, 32(1):4-7.
15 晁锐,张科,李言俊. 一种基于小波变换的图像融合算法[J].电子学报, 2004, 32(5):750-753.
Chao Rui, Zhang Ke, Li Yan-jun. An image fusion algorithm using wavelet transform[J]. Acta Electronica Sinica, 2004, 32(5):750-753.
16 王智文,李绍滋. 基于多元统计模型的分形小波自适应图像去噪[J].计算机学报, 2014, 37(6):1380-1389.
Wang Zhi-wen, Li Shao-zi. Adaptive fractal-wavelet image denoising base on multivariate statistical model[J]. Chinese Journal of Computers, 2014, 37(6):1380-1389.
17 李庆忠,刘清.基于小波变换的低照度图像自适应增强算法[J].中国激光, 2015,42(2):272-278.
Li Qing-zhong, Liu Qing. Adaptive enhancement algorithm for low illumination images based on wavelet transform[J]. Chinese Journal of Lasers, 2015,42(2):272-278.
18 Land E H, Mccann J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1):1-11.
19 Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround Retinex[J]. IEEE Transactions on Image Processig, 1997, 6(3):451-462.
20 占必超,吴一全,纪守新.基于平稳小波变换和Retinex的红外图像增强方法[J].光学学报, 2010, 30(10): 2788-2793.
Zhan Bi-chao, Wu Yi-quan, Ji Shou-xin. Infrared image enhancement method based on stationary wavelet transformation and retinex[J]. ACTA Optica Sinica, 2010, 30(10):2788-2793.
21 马忠丽,文杰. 融合边缘信息的单尺度Retinex海雾去除算法[J].计算机辅助设计与图形学学报, 2015, 27(2):217-225.
Ma Zhong-li, Wen Jie. Single-scale retinex sea fog removal algorithm fused the edge information[J]. Journal of Computer-Aided Design and Computer Graphics, 2015, 27(2): 217-225.
22 Kimmel R, Ellad M, Shaked D, et al. A variational framework for retinex[J]. International Journal of Computer Vision, 2003, 52(1):7-23.
23 Li M. A fast algorithm for color image enhancement with total variation regularization[J]. Science China(Information Sciences), 2010, 53(9):1913-1916.
24 汪荣贵,朱静,杨万挺,等.基于照度分割的局部多尺度Retinex算法[J].电子学报, 2010, 38(5):1181-1186.
Wang Rong-gui, Zhu Jing, Yang Wan-ting, et al. An improved local multi-scale Retinex algorithm based on illumination image segmentation[J]. Acta Electronica Sinica, 2010, 38(5):1181-1186.
25 张尚伟,曾平,罗雪梅,等.具有细节补偿和色彩恢复的多尺度Retinex色调映射算法[J].西安交通大学学报,2012, 46(4): 32-37.
Zhang Shang-wei, Zeng Ping, Luo Xue-mei, et al. Multi-scale Retinex with color restoration and detail compensation[J]. Journal of Xi'an Jiaotong University, 2012, 46(4):32-37.
26 智宁,毛善君,李梅.沙尘降质图像清晰化算法[J].中国图象图形学报, 2016, 21(12):1585-1592.
Zhi Ning, Mao Shan-jun, Li Mei. Visibility restoration algorithm of dust-degraded images[J]. Journal of Image and Graphics, 2016, 21(12): 1585-1592.
27 刘海波,杨杰,吴正平,等.基于暗通道先验和Retinex理论的快速单幅图像去雾方法[J].自动化学报, 2015, 41(7):1264-1273.
Liu Hai-bo, Yang Jie, Wu Zheng-ping, et al. A fast single image dehazing method based on dark channel prior and retinex theory[J]. Acta Automatica Sinica, 2015, 41(7):1264-1273.
28 Narasimhan S G, Nayar S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3):233-254.
29 Shurcliff W A, Ballard S S. Polarized Light[M]. Princeton: Van Nostrand, 1964.
30 Schechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001:325-332.
31 Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images[C]∥Proceedings of the Polarization Science and Remote Sensing,San Diego, USA,2005:36-45.
32 Schechner Y Y, Averbuch Y. Regularized image recovery in scattering media[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9):1655-1660.
33 周浦城,薛模根,张洪坤,等. 利用偏振滤波的自动图像去雾[J].中国图象图形学报, 2011, 16(7):1178-1183.
Zhou Pu-cheng, Xue Mo-gen, Zhang Hong-kun, et al. Automatic image dehaze using polarization filtering[J]. Journal of Image and Graphics, 2011, 16(7):1178-1183.
34 Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation[J]. IEEE Transactions on Image Processing, 1998, 7(2): 167-179.
35 He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.
36 陈俊君.基于暗原色先验的图像去雾算法研究[D].沈阳: 东北大学机械工程与自动化学院, 2013.
Chen Jun-jun. Research on image defogging based on dark channel prior[D]. Shenyang: School of Mechanical Engineering and Automation,Northeastern University, 2013.
37 张选德,冯象初,王卫卫,等.基于双向非局部模型的图像插值[J].中国科学:技术科学, 2013, 43(5):564-573.
Zhang Xuan-de, Feng Xiang-chu, Wang Wei-wei, et al. Two-direction nonlocal model for image interpolation[J]. Science China(Technology Sciences), 2013, 43(5):564-573.
38 张小刚,唐美玲,陈华,等.一种结合双区域滤波和图像融合的单幅图像去雾算法[J].自动化学报, 2014, 40(8):1733-1739.
Zhang Xiao-gang, Tang Mei-ling, Chen Hua, et al. A dehazing method in single image based on double-area filter and image fusion[J]. Acta Automatica Sinica, 2014, 40(8):1733-1739.
39 杨燕,陈高科.基于光补偿和逐像素透射率的图像复原算法[J].通信学报, 2017,38(5):48-56.
Yang Yan, Chen Gao-ke. Single image visibility restoration using optical compensation and pixel-by-pixel transmittance[J]. Journal on Communications, 2017, 38(5):48-56.
40 曲晨, 毕笃彦. 基于懒惰随机游走的雾天含噪图像清晰化[J].光学学报, 2018, 38(4):95-104.
Qu Chen, Bi Du-yan. Clearness for foggy and noisy image based on lazy random walk[J]. ACTA Optica Sinica,2018, 38(4): 95-104.
41 杨燕, 王志伟. 基于均值不等关系优化的自适应图像去雾算法[J]. 电子与信息学报, 2020, 42(3): 755-763.
Yang Yan, Wang Zhi-wei. Adaptive image dehazing algorithm based on mean unequal relation optimization[J]. Journal of Electronics and Information Technology, 2020, 42(3): 755-763.
42 Iwamoto R, Yutaro H, Hashimoto M, et al. Real time haze removal using normalised pixel wise dark channel prior and robust atmospheric light estimation[J]. Applied Sciences,2020,10(3): 1165-1176.
43 Fattal R. Single image dehazing[J]. ACM Transaction on Graphics, 2008, 27(3):1-9.
44 Tan R T. Visibility in bad weather from a single image[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 2347-2354.
45 梅英杰,宁媛,陈进军.融合暗通道先验和MSRCR的分块调节图像增强算法[J].光子学报,2019,48(7): 124-135.
Mei Ying-jie, Ning Yuan, Chen Jin-jun. Block-adjusted image enhancement algorithm combining dark channel prior with MSRCR[J]. Acta Photonica Sinica, 2019,48(7): 124-135.
46 Cai B L, Xu X M, Jia K, et al. DehazeNet: an end-to-End system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11):5187-5198.
47 陈永,郭红光,艾亚鹏. 基于多尺度卷积神经网络的单幅图像去雾方法[J]. 光学学报,2019,39(10): 149-158.
Chen Yong, Guo Hong-guang, Ai Ya-peng. Single image dehazing method based on multi-scale convolution neural network[J]. ACTA Optica Sinica, 2019,39(10):149-158.
48 刘杰平,杨业长,陈敏园,等.结合卷积神经网络与动态环境光的图像去雾算法[J]. 光学学报, 2019,39(11): 120-131.
Liu Jie-ping, Yang Ye-chang, Chen Min-yuan, et al. Image dehazing algorithm based on convolutional neural network and dynamic ambient light[J]. Acta Optica Sinica, 2019, 39(11):120-131.
49 Li B Y, Peng X L, Wang Z Y. An all-in-one network for dehazing and beyond[C]∥IEEE International Conference on Computer Vision, Venice, Italy,2017:1-12.
50 Zhang H, Patel V M. Densely connected pyramid dehazing network[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3194-3203.
51 Chen D D, He M M, Fan Q N. Gated context aggregation network for image dehazing and deraining[C]∥IEEE Conference on Applications of Computer Vision, Hawaii,USA,2019:1375-1383.
52 Zhang X Q,Wang T, Wang J X,et al. Pyramid channel based feature attention network for image dehazing[J]. Computer Vision and Image Understanding, 2020, 197-198:101003.
53 Li Z H,Gui B,Zhen T,et al. Grain depot image dehazing via quadtree decomposition and convolutional neural networks[J]. Alexandria Engineering Journal, 2020, 59(3):1463-1472.
54 Qin X,Wang Z L,Bai Y C, et al. FFA-Net: feature fusion attention network for single image dehazing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):11908-11915.
55 Shao Y J, Li L, Ren W Q, et al. Domain adaptation for image dehazing[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 2808-2817.
56 Hautiere N, Tarel J P, AUBERT D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis & Stereology Journal, 2008,27(2): 87-95.
57 Jain A K. Fundamentals of digital image processing[M]. Englewood Cliffs: Prentice Hall, 1989.
58 Kim Y T. Contrast enhancement using brightness preserving bi-histogram equalization[J]. IEEE Transactions on Consumer Electronics, 1997, 43(1):1-8.
59 Mallat S G. A theory for multi resolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
60 Rahman Z, Jobson D J, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.
61 胡妍,王柯俨,许宁,等.利用分割中值滤波和透射率补偿的图像去雾[J]. 西安电子科技大学学报:自然科学版,2018, 45(4):99-105.
Hu Yan, Wang Ke-yan, Xu Ning,et al. Image dehazing by the segmenting median filter and transmission compensation[J]. Journal of Xidian University (Natural Science), 2018, 45(4): 99-105.
[1] Jing JIN,Jian-wu DANG,Yang-ping WANG,Dong SHEN. Multi⁃cue particle filter tracking based on fuzzy statistical texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1111-1120.
[2] Ji-chang GUO,Shan-shan QIAO. Underwater image restoration based on depth map [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 677-684.
[3] Fu LIU,Lu LIU,Tao HOU,Yun LIU. Night road image enhancement method based on optimized MSR [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 323-330.
[4] Guo-hua LIU,Wen-bin ZHOU. Pulse wave signal classification algorithm based on time⁃frequency domain feature aliasing using convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1818-1825.
[5] Zai-feng SHI,Jin-zhuo LI,Qing-jie CAO,Hui-long LI,Qi-xing HU. Low⁃dose spectral computer⁃tomography imaging denoising method via a generative adversarial network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1755-1764.
[6] Ke-yan WANG,Di WANG,Xi ZHAO,Jing-yi CHEN,Yun-song LI. Image dehazing based on joint estimation via convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1771-1777.
[7] Hua CHEN,Wei GUO,Jing-wen YAN,Wen-hao ZHUO,Liang-bin WU. A new deep learning method for roads recognition from SAR images [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1778-1787.
[8] Wei ZHANG,Yong HAN,Ming JIN,Xiao-lin QIAO. Toeplitz matrices reconstruction based DOA estimation for coherent signals [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 703-710.
[9] Yan-fen CHENG,Li-juan YAO,Qiao YUAN,Xian-qiao CHEN. Clearing strategy of underwater video image [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 668-677.
[10] Xiao-hui YU,Zhi-cheng ZHANG,Xin-bo LI,Xiao-dong SUN. Parameter estimation of exponentially damped sinusoidsbased on state⁃space model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2083-2088.
[11] Fu LIU, Mei-jing QUAN, Ke WANG, Yun LIU, Bing KANG, Zhi-wu HAN, Tao HOU. Indoor positioning method based on location fingerprinting of imitating mechanism of scorpion vibration source [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2076-2082.
[12] Zi-ji MA,Hao LU,Yan-ru DONG. Dual path convolutional neural network forsingle image super⁃resolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2089-2097.
[13] Yang LU,Shi-gang WANG,Wen-ting ZHAO,Yan ZHAO. Facial expression recognition based on separability assessment of discrete Shearlet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1715-1725.
[14] Chao DONG,Jing⁃hong LIU,Fang XU,Ren⁃hao WANG. Fast ship detection in optical remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1369-1376.
[15] Ke⁃yan WANG,Yan HU,Huai WANG,Yun⁃song LI. Image dehazing algorithm by sky segmentation and superpixel⁃level dark channel [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1377-1384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!