Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1775-1784.doi: 10.13229/j.cnki.jdxbgxb20200573

Previous Articles    

Remote sensing image fusion algorithm based on relative total variation structure extraction

Xiong-fei LI1,2(),Jia-jing WU1,2,Xiao-li ZHANG1,2(),Ze-yu WANG2,Yun-cong FENG2,3   

  1. 1.College of Software,Jilin University,Changchun 130012,China
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China
    3.College of Computer Science and Engineering,Changchun University of Technology,Changchun 130012,China
  • Received:2020-07-28 Online:2021-09-01 Published:2021-09-16
  • Contact: Xiao-li ZHANG E-mail:lxf@jlu.edu.cn;zhangxiaoli@jlu.edu.cn

Abstract:

Aiming at taking both color information and edge retention into count as much as possible, an effective multi-scale fusion method based on structure extraction and visual salience map (VSM) is proposed. Firstly, the source images are decomposed by a validated structure extraction from the texture via relative total variation. Then, preserving the color of MS and the edge definition are considered in the fusion of base layers and the conventional 'averaging' fusion scheme is unable to achieve the same effects. Next, VSM-based technique is proposed to fuse the detail layers to figure out perceptually and combine salient visual structures, standing out from neighbors. Finally, the desired fusion image was obtained by image reconstruction, using the detailed and based fused results. Remote sensing images from the Worldview-2 satellite are used as the data set which verifies the effectiveness of our algorithm. Experiments show that the algorithm designed in this paper retains the detail information of the panchromatic image and the spectral information of multispectral image, and highlight the expediency and suitability with comparing with others.

Key words: image fusion, remote sensing images, structure extraction, fusion rules

CLC Number: 

  • TP391

Fig.1

Line chart of indicator change"

Fig.2

Algorithm framework diagram"

Fig.3

Seaside image comparison experiment"

Fig.4

Bridge image comparison experiment"

Fig.5

Vegetation image comparison experiment"

Table 1

Seaside image objective evaluation experiment results"

对比算法RMSEERGASPSNRCCSAMSSIM
CVT13.486229.482311.21680.95030.15170.9124
IHS17.103229.17589.58220.92980.15180.9292
DWT13.732430.388711.35450.95060.15920.8937
NSCT13.121728.952111.44200.95370.14910.8970
CMP15.339428.97619.99340.93190.17990.8663
CNN13.213627.94259.70780.95290.15950.8941
本文算法12.942528.939011.55510.95470.14770.9415

Table 2

Bridge image objective evaluation experiment results"

对比算法RMSEERGASPSNRCCSAMSSIM
CVT12.009434.394611.85530.95470.36250.7233
IHS14.503431.211910.29030.94740.36030.7803
DWT12.412336.019011.82980.95360.36470.7244
NSCT11.841934.079511.96220.95760.36330.7393
CMP17.892956.464311.52130.91130.37500.8096
CNN14.209444.119610.37270.95320.36350.7593
本文算法11.547331.106813.15540.95780.35870.7989

Table 3

Vegetation image objective evaluation experiment results"

对比算法RMSEERGASPSNRCCSAMSSIM
CVT15.447350.401710.73160.91190.23090.8831
IHS23.421561.72388.23850.90220.21740.8595
DWT15.709250.890210.71460.91320.23740.8761
NSCT15.383450.293310.74440.91570.22840.8865
CMP20.903657.053210.11770.89290.25810.8381
CNN22.708160.75078.36880.90430.21710.8891
本文算法15.390243.518713.31280.91680.21640.9016

Fig.6

Average objective index"

Table 4

Base layers ablation experiment"

对比算法RMSEERGASPSNRCCSAMSSIM
平均值法56.885455.84275.06120.88660.30130.9004
加权最小二乘法13.178234.741110.44850.94530.24880.8848
局部能量法16.325639.41218.56920.92330.28170.8913
本文算法12.660832.815012.79630.94610.21640.9016

Table 5

Details layers ablation experiment"

对比算法RMSEERGASPSNRCCSAMSSIM
绝对值取最大策略13.072633.126011.86360.91020.25420.8926
局部能量法14.152237.882810.23850.90020.22630.8733
加权最小二乘法14.076734.861012.40060.93590.23480.8845
本文算法12.660832.815012.79630.94610.21640.9016
1 Liu X Y, Liu Q J, Wang Y H. Remote sensing image fusion based on two-stream fusion network[J]. Information Fusion, 2020, 55: 1-15.
2 Sun J. A study of PCA image fusion techniques on remote sensing[C]∥International Conference on Space Information Technology. International Society for Optics and Photonics, 2005: 739-744.
3 Hassan G. A review of remote sensing image fusion methods[J]. Information Fusion, 2016, 32: 75-89.
4 Leung Y, Liu J, Zhang J. An improved adaptive intensity-hue-saturation method for the fusion of remote sensing images[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 11(5): 985-989.
5 包磊, 徐其志. 基于PCA变换和光谱补偿的遥感影像融合方法[J]. 吉林大学学报: 工学版, 2013, 43(): 88-91.
Bao Lei, Xu Qi-zhi. Spectrum-keeping algorithm for fusing based on PCA[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(Sup.1): 88-91.
6 Tu T M, Lee Y C, Chang C P, et al. Adjustable intensity-hue-saturation and Brovey transform fusion technique for IKONOS/QuickBird imagery[J].Optical Engineering, 2005, 44(11): 116201.
7 Candra D S. Analysis of SPOT-6 data fusion using Gram-Schmidt spectral sharpening on rural areas[J]. International Journal of Remote Sensing & Earth Sciences, 2013, 10(2): 84-89.
8 Shahdoosti H R, Ghassemian H. Spatial PCA as a new method for image fusion[C]∥Csi International Symposium on Artificial Intelligence and Signal Processing,Shiraz, Iran, 2012: 90-94.
9 陈荣元, 郑晨, 申立智. 多源影像融合与分割的协同方法[J]. 电子学报, 2015, 43(10): 1994-2000.
Chen Rong-yuan, Zheng Chen, Shen Li-zhi.Cooperation between fusion and segmentation for multisource image[J]. Acta Electronica Sinica, 2015, 43(10): 1994-2000.
10 李雄飞, 宋璐, 张小利. 基于协同经验小波变换的遥感图像融合[J]. 吉林大学学报: 工学版, 2019, 49(4): 1307-1319.
Li Xiong-fei, Song Lu, Zhang Xiao-li. Remote sensing image fusion based on cooperative empirical wavelet transform[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1307-1319.
11 金海燕, 焦李成. 基于CP和多小波HMT模型的克隆选择遥感图像融合[J]. 计算机学报, 2009, 32(7): 1434-1442.
Jin Hai-yan, Jiao Li-cheng. Clonal selection remote sensing image fusion based on CP and multiwavelet HMT models[J]. Chinese Journal of Computers, 2009, 32(7): 1434-1442.
12 Li Y T, Wu J, Yang Y. HIS and DWT based remote sensing image fusion and its application on road extraction[C]∥2011 International Conference on Consumer Electronics, Communications and Networks, Xianning, 2011, 394-397.
13 李光鑫, 王珂. 基于Contourlet变换的彩色图像融合算法[J]. 电子学报, 2007, 35(1): 112-117.
Li Guang-xin, Wang Ke. Color image fusion algorithm using the contourlet transform[J]. Acta Electronica Sinica, 2007,35(1): 112-117.
14 Li T J, Wang Y Y. Biological image fusion using a NSCT based variable weight method[J]. Information Fusion, 2011, 12(2): 85-92.
15 Li H, Zhang F, Zhang K. Remote sensing image fusion based on sparse non-negative matrix factorization[J]. Journal of Xidian University, 2016, 43(2): 193-198.
16 Dong Y N, Du B, Zhang L P. Target detection based on random forest metric learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 8(4): 1830-1838.
17 He G, Ji J, Dong D, et al. Infrared and visible image fusion method by using hybrid representation learning[J]. Geoscience and Remote Sensing Letters, 2019, 6(11): 1796-1800.
18 Xiao A, Wang Z Y, Wang L, et al. Super-resolution for 'Jilin-1' satellite video imagery via a convolutional network[J]. Sensors, 2018, 18(4): 18041194.
19 Liu Y, Chen X, Wang Z, et al. Deep learning for pixel-level image fusion: recent advances and future prospects[J]. Information Fusion, 2018, 42: 158-173.
20 Xu L, Yan Q, Xia Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transaction on Graphics, 2012, 31(6): 2366158.
21 Ma J L, Zhou Z Q, Wang B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics and Technology, 2017, 82: 8-17.
22 Tan W, Xiang P, Zhang J, et al. Remote sensing image fusion via boundary measured dual-channel PCNN in multi-scale morphological gradient domain[J]. Access, 2020, 99: 42540-42549.
23 Liu Y, Chen X, Cheng J,et al. A medical image fusion method based on convolutional neural networks[C]∥20th International Conference on Information Fusion, Xi'an, China, 2017: 17102534.
[1] Guang-qiu CHEN,Yu-cun CHEN,Jia-yue LI,Guang-wen LIU. Infrared and visible image fusion based on discrete nonseparable shearlet transform and convolutional sparse representation [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 996-1010.
[2] Man CHEN,Yong ZHONG,Zhen-dong LI. Multi-focus image fusion based on latent lowrank representation combining lowrank representation [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 297-305.
[3] Xiong-fei LI,Jing WANG,Xiao-li ZHANG,Tie-hu FAN. Multi-focus image fusion based on support vector machines and window gradient [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 227-236.
[4] Xiong-fei LI,Lu SONG,Xiao-li ZHANG. Remote sensing image fusion based on cooperative empirical wavelet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1307-1319.
[5] LIU Zhe, XU Tao, SONG Yu-qing, XU Chun-yan. Image fusion technology based on NSCT and robust principal component analysis model with similar information [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1614-1620.
[6] YIN Ming, ZHAN Yin-wei, PEI Hai-long. Co-sparse analysis operator learning for image fusion [J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058.
[7] YU De-xin, LIU Chun-yu, ZHENG Kun, GUO Ya-juan, ZHAO Xin. Space occupancy estimating method based on remote sensing images [J]. 吉林大学学报(工学版), 2016, 46(3): 764-769.
[8] WANG Xiao-wen, ZHAO Zong-gui, PANG Xiu-mei, LIU Min. Image fusion method based on visual saliency maps [J]. 吉林大学学报(工学版), 2014, 44(4): 1203-1208.
[9] YANG Yang, DAI Ming, ZHOU Luo-yu, SUN Ming-chao. Multifocus image fusion based on nonsubsampled Bandelet transform [J]. 吉林大学学报(工学版), 2014, 44(2): 525-530.
[10] WANG Xin, LI Wei-lin, LIU Fu. New algorithm of CT/MRI medical image fusion based on wavelet domain [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 25-28.
[11] LI Juan, NAN Xu-liang, BI Si-yuan, WU Wei. Image Fusion based on an improved algorithm of Multi-objective Particle swarm Optimization [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 477-480.
[12] BAO Lei, XU Qi-zhi. Spectrum-keeping algorithm for fusing based on PCA [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 88-91.
[13] XING Xiao-xue, LIU Fu, MA Dong-mei, ZHAI Wei-wei, WANG Fang-rong. Intelligent counting system of soft fibrils collection based on machine vision [J]. , 2012, 42(05): 1267-1272.
[14] LIU Gang, ZHAO Hong-yi, HU Zhen-long. Weighted mixed-norm based blind super-resolution algorithm [J]. , 2012, 42(04): 1054-1058.
[15] SUN Ming-chao, ZHANG Chong, LIU Jing-hong. Fusion of visible and infrared images based on multi-scale image enhancement [J]. , 2012, (03): 738-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!