Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2164-2173.doi: 10.13229/j.cnki.jdxbgxb20200674
Sheng-sheng WANG(),Jing-yu CHEN,Yi-nan LU()
CLC Number:
1 | Bedford J, Enria D, Giesecke J, et al. COVID-19: towards controlling of a pandemic[J]. The Lancet, 2020, 395(10229): 1015-1018. |
2 | 国家卫生健康委办公厅. 新型冠状病毒肺炎诊疗方案(试行第七版)[J].传染病信息,2020,33(1):1-6, 26. |
General office of the national health commission. COVID-19 diagnosis and treatment protocol (trial version 7)[J]. Infectious Disease Information, 2020, 33(1): 1-6, 26. | |
3 | Li Yan, Xia Li-ming. Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management[J]. American Journal of Roentgenology, 2020, 214(6): 1280-1286. |
4 | 管汉雄, 熊颖, 申楠茜, 等. 新型冠状病毒肺炎 (COVID-19)临床影像学特征[J]. 放射学实践, 2020, 35(2): 125-130. |
Guan Han-xiong, Xiong Ying, Shen Nan-qian, et al. Clinical and thin-section CT features of patients with the COVID-19 in Wuhan[J]. Radiologic Practice, 2020, 35(2): 125-130. | |
5 | Chung M, Bernheim A, Mei X Y, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV)[J]. Radiology, 2020, 295(1): 202-207. |
6 | Shi H Y, Han X Y, Jiang N C, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study[J]. The Lancet Infectious Diseases, 2020, 20(4): 425-434. |
7 | 李欢,程尼涛,孙文博,等. 人工智能辅助定量分析新型冠状病毒肺炎的CT进展类型[J]. 武汉大学学报:医学版, 2021, 42(1):1-5. |
Li Huan, Cheng Ni-tao, Sun Wen-bo, et al. AI-assisted quantitative analysis of chest CT progression patterns of COVID-19[J]. Medical Journal of Wuhan University, 2021, 42(1):1-5. | |
8 | Sheller M J, Reina G A, Edwards B, et al. Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation[C]∥International MICCAI Brainlesion Workshop. Cham: Springer, 2018: 92-104. |
9 | Nakamoto S. Bitcoin: a peer-to-peer electronic cash system[J/OL]. [2020-08-23]. |
10 | 袁勇,王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4):481-494. |
Yuan Yong, Wang Fei-yue. Blockchain: the state of the art and future trends[J]. Acta Automatica Sinica, 2016, 42(4):481-494. | |
11 | Konečný J, McMahan H B, Ramage D, et al. Federated optimization: distributed machine learning for on-device intelligence[J/OL]. [2020-08-10]. |
12 | Yang Q, Liu Y, Chen T J, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2):No.12. |
13 | 杨强. AI与数据隐私保护:“联邦学习”的破解之道[J]. 信息安全研究, 2019, 5(11):961-965. |
Yang Qiang. AI and data privacy protection:the way to federated learning[J]. Journal of Information Security Research, 2019, 5(11):961-965. | |
14 | 王赫彬. 区块链技术与应用前瞻综述[J].科技创新导报, 2020, 17(14):126-127. |
Wang He-bin. Overview of blockchain technology and application prospects[J]. Science and Technology Innovation Herald, 2020, 17(14): 126-127. | |
15 | Rahman M U, Guidi B, Baiardi F. Blockchain-based access control management for decentralized online social networks[J]. Journal of Parallel and Distributed Computing, 2020, 144: 41-54. |
16 | Yue X, Wang H J, Jin D W, et al. Healthcare data gateways: found healthcare intelligence on blockchain with novel privacy risk control[J]. Journal of Medical Systems, 2016, 40(10):No.218. |
17 | Zheng Z B, Xie S A, Dai H N, et al. An overview of blockchain technology: architecture, consensus, and future trends[C]∥2017 IEEE International Congress on Big Data, Honolulu, HI, USA, 2017: 557-564. |
18 | 肖明尧, 李雄飞, 张小利, 等. 基于多尺度的区域生长的图像分割算法[J]. 吉林大学学报:工学版, 2017, 47(5): 1591-1597. |
Xiao Ming-yao, Li Xiong-fei, Zhang Xiao-li, et al. Medical image segmentation algorithm based on multi-scale region growing[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(5): 1591-1597. | |
19 | Al-Amri S S, Kalyankar N V, Khamitkar S D. Image segmentation by using edge detection[J]. International Journal on Computer Science and Engineering, 2010, 2(3): 804-807. |
20 | Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
21 | Kumar A, Upadhyay N, Ghosal P, et al. CSNet: a new deepnet framework for ischemic stroke lesion segmentation[J]. Computer Methods and Programs in Biomedicine, 2020,193: No.105524. |
22 | Zhou Z X, He Z S, Jia Y Y. AFPNet: a 3D fully convolutional neural network with atrous-convolution feature pyramid for brain tumor segmentation via mri images[J]. Neurocomputing, 2020, 402: 235-244. |
23 | 郜峰利,陶敏,李雪妍,等. 基于深度学习的CT影像脑卒中精准分割[J]. 吉林大学学报:工学版, 2020, 50(2): 678-684. |
Gao Feng-li, Tao Min, Li Xue-yan, et al. Accurate segmentation of stroke in CT image based on deep learning[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 678-684. | |
24 | Samarakoon S, Bennis M, Saad W, et al. Distributed federated learning for ultra-reliable low-latency vehicular communications[J]. IEEE Transactions on Communications, 2019, 68(2): 1146-1159. |
25 | 朱辉,秦品乐. 基于多尺度特征结构的U-Net肺结节检测算法[J]. 计算机工程, 2019, 45(4): 254-261. |
Zhu Hui,Qin Pin-le. U-Net pulmonary nodule detection algorithm based on multi-scale feature structure[J]. Computer Engineering, 2019, 45(4): 254-261. | |
26 | 魏柳,向智霆,刘剑聪,等.基于回环残差注意力机制U-net的胰腺分割[J].重庆邮电大学学报:自然科学版, 2021, 33(4): 653-660. |
Wei Liu, Xiang Zhi-ting, Liu Jian-cong,et al. Pancreas segmentation based on ringed residual attention U-net[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2021, 33(4): 653-660. | |
27 | 郝华颖, 赵昆, 苏攀, 等. 一种基于改进ResU-Net的角膜神经分割算法[J]. 计算机工程, 2021, 47(1): 217-223. |
Hao Hua-ying, Zhao Kun, Su Pan, et al. A corneal nerve segmentation algorithm based on improved ResU-Net[J]. Computer Engineering, 2021, 47(1): 217-223. | |
28 | Decker C, Wattenhofer R. Information propagation in the bitcoin network[C]∥IEEE P2P 2013 Proceedings, Trento, Italy, 2013: 1-10. |
29 | Rodrigues P. COVID-19 CT segmentation dataset[DB/OL]. [2020-08-30]. |
[1] | Jie CAO,Xue QU,Xiao-xu LI. Few⁃shot image classification method based on sliding feature vectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1785-1791. |
[2] | Hong-wei ZHAO,Zi-jian ZHANG,Jiao LI,Yuan ZHANG,Huang-shui HU,Xue-bai ZANG. Bi⁃direction segmented anti⁃collision algorithm based on query tree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1830-1837. |
[3] | Chun-bo WANG,Xiao-qiang DI. Cloud storage integrity verification audit scheme based on label classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1364-1369. |
[4] | Rong QIAN,Ru ZHANG,Ke-jun ZHANG,Xin JIN,Shi-liang GE,Sheng JIANG. Capsule graph neural network based on global and local features fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1048-1054. |
[5] | Shu-tao SHEN,Zha-xi NIMA. Double chaos identifiable tampering image encryption method based on blockchain technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1055-1059. |
[6] | Qian-yi XU,Gui-he QIN,Ming-hui SUN,Cheng-xun MENG. Classification of drivers' head status based on improved ResNeSt [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 704-711. |
[7] | Lu-shen WU,Wei CHENG,Yun HU. Image segmentation of multilevel threshold based on improved cuckoo search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 358-369. |
[8] | Yuan SONG,Dan-yuan ZHOU,Wen-chang SHI. Method to enhance security function of OpenStack Swift cloud storage system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 314-322. |
[9] | Xiang-jiu CHE,You-zheng DONG. Improved image recognition algorithm based on multi⁃scale information fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1747-1754. |
[10] | Feng-li GAO,Min TAO,Xue-yan LI,Xin HE,Fan YANG,Zhuo WANG,Jun-feng SONG,Dan TONG. Accurate segmentation of stroke in CT image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 678-684. |
[11] | Jun-jun LI,Jian-nong CAO,Bei-bei CHENG,Juan LIAO,Ying-ying ZHU. High spatial resolution remote sensing imagery segmentation based on combination of pixels and multi⁃scaleobjects using spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2098-2108. |
[12] | LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937. |
[13] | XIAO Ming-yao, LI Xiong-fei, ZHANG Xiao-li, ZHANG Liu. Medical image segmentation algorithm based on multi-scale region growing [J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597. |
[14] | LIU Zhong-min, LI Zhan-ming, LI Bo-hao, HU Wen-jin. Spectral clustering image segmentation based on sparse matrix [J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313. |
[15] | ZHAO Fu-qun, ZHOU Ming-quan, GENG Guo-hua. Image threshold segmentation with GA-Otsu method and quantitative identification [J]. 吉林大学学报(工学版), 2017, 47(3): 959-964. |
|