Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 358-369.doi: 10.13229/j.cnki.jdxbgxb20190858

Previous Articles    

Image segmentation of multilevel threshold based on improved cuckoo search algorithm

Lu-shen WU(),Wei CHENG,Yun HU   

  1. School of Mechanical and Electrical Engineering,Nanchang University,Nanchang 330031,China
  • Received:2019-09-03 Online:2021-01-01 Published:2021-01-20

Abstract:

In order to overcome the issue of large amount of calculation and long computing time of the traditional multi-threshold image segmentation methods, a multi-threshold image segmentation method based on improved cuckoo search algorithm is proposed. Firstly, the teaching-learning search strategy is introduced into the cuckoo algorithm to improve local search ability of the algorithm. Secondly, the elite solution with better fitness value in the current population is selected to construct the elite database, and the elite solution is randomly selected to guide the search direction, so as to strengthen the advantage of experience learning. Finally, the simulated annealing mechanism is introduced to select the bird's nest location, which can effectively avoid the individuals falling into the local optimum in the process of optimization. Several different types of complex multi-target images are selected for segmentation experiments in comparison with those of cuckoo search algorithm (CS), shuffled frog leaping algorithm (SFL), teaching-learning-based optimization (TLBO) and hybrid PSOGSA with generalized oppositing-based learning (GOPSOGSA). Experimental results show that the proposed method is superior to the contrasted algorithms in segmentation accuracy, running time and convergence. It can quickly and effectively solve the multi-threshold segmentation problem of complex multi-target images.

Key words: image segmentation, multilevel threshold segmentation, cuckoo search algorithm(CS), teaching-learning search strategy, elite solution, simulated annealing mechanism

CLC Number: 

  • TP391.4

Fig.1

Flow chart of multi-threshold image segmentation based on improved cuckoo search algorithm"

Fig.2

Gray histogram of original images"

Table1

Control parameters of the proposed method"

参数名称数值
发现概率Pa0.25
精英库中精英解数量最大值nmax15
精英库中精英解数量最小值nmin2
降温衰减系数α0.8

Fig.3

Original images and multi-threshold segmentation results"

Table 2

Comparison of segmentation thresholds from five methods"

图像m分割方法
CSSFLTLBOGOPSOGSA本文
Lena359,108,15961,110,15958,108,15859,108,15959,108,159
459,102,148,18550,87,122,16251,90,131,17053,98,143,18455,99,143,182
538,72,106,143,18154,90,105,143,17634,67,108,142,18146,83,118,152,18644,80,115,150,185
Goldhill377,130,17676,131,17777,130,17777,130,17677,130,176
458,97,142,18554,92,129,17354,95,140,18360,100,144,18864,104,146,188
566,98,137,172,20044,75,107,138,18453,83,116,148,18561,100,133,163,20258,94,130,164,198
Lake371,118,16873,118,16972,119,16871,118,16871,118,168
464,103,151,19561,99,132,17275,121,163,19871,116,158,19569,111,155,194
558,85,123,162,19536,72,112,156,19340,78,119,161,19763,100,133,166,20161,95,130,165,197
Bridge374,126,17771,122,17275,125,17674,126,17574,126,175
471,118,172,21767,115,163,21370,118,167,21872,120,172,21974,125,174,220
558,98,139,179,22187,124,157,192,22356,95,132,174,22166,110,147,187,22563,103,143,184,223
Foxes363,123,18364,122,18262,121,18163,123,18263,123,182
448,91,137,18945,82,136,18965,112,152,19858,101,146,19355,102,149,195
547,79,112,141,17836,69,111,149,19444,104,136,177,21147,90,134,171,20946,85,124,163,202
Boat379,142,19980,145,19778,142,20079,142,19979,142,199
448,101,146,19943,85,141,20050,96,143,19349,103,151,20048,98,148,201
542,76,115,154,20334,63,102,148,19643,71,113,157,20141,81,122,161,20545,84,124,161,205

Table 3

Comparison of object function values from five methods"

图像m分割方法
CSSFLTLBOGOPSOGSA

本文

方法

Lena315.764615.762015.764115.764615.7646
418.565318.508518.526418.583318.5885
521.206421.073521.156221.225821.2388
Goldhill315.607715.606215.607115.607715.6077
418.398118.353018.383718.405518.4142
521.041620,952020.988421.062821.0991
Lake315.565815.564315.565615.565815.5658
418.342318.293618.334118.362018.3693
520.972120.889520.910221.003621.0259
Bridge315.472815.470715.472415.473515.4735
418.430418.402618.421318.436618.4434
521.212221.049021.188521.243021.2555
Foxes315.968615,.967215.967815.968815.9688
418.896918.852318.881918.918618.9276
521.582021.465721.506921.644021.6757
Boat316.210916.207016.210116.210916.2109
419.338519.282919.305419.340119.3478
522.102721.916222.048522.128722.1352

Fig.4

5-threshold segmentation results of Lena image"

Fig.5

5-threshold segmentation results of Lake image"

Fig.6

5-threshold segmentation results of ridge image"

Fig.7

5-threshold segmentation results of Foxes image"

Table 4

Comparison of PSNR values from five methods"

图像m分割方法
CSSFLTLBOGOPSOGSA

本文

方法

Lena320.465420.314520.441220.465420.4654
422.162121.717822.038922.505622.8019
523.735522.564123.366223.927624.3137
Goldhill320.915420.762320.841920.915420.9154
423.067522.797122.913623.349923.7912
523.579322.183222.943523.842824.9052
Lake319.326219.243919.309519.326219.3262
421.468920.437621.278721.524821.7116
522.245021.056221.624322.631622.9765
Bridge320.404520.312420.376220.418020.4180
420.762119.917820.318921.185621.5558
522.783621.452622.120823.157723.6224
Foxes322.335722.290222.322522.337922.3379
423.761323.162423.591524.056324.2487
524.562723.542924.320624.963225.5493
Boat320.743420.655420.737920.743420.7434
424.681524.274024.419524.852125.1556
526.145925.339525.795826.350326.8693

Table 5

Comparison of computing time from five methods"

图像m分割方法
CSSFLTLBOGOPSOGSA

本文

方法

Lena31.75921.86361.70341.78581.6592
41.90352.11851.82231.91841.7414
52.10282.49432.06492.17261.9873
Goldhill31.42341.58561.39331.43821.3525
41.54551.82411.50761.64051.4352
51.82842.09261.74681.87901.6429
Lake31.60641.72471.54291.66021.4938
41.74151.91201.69361.82371.6085
51.97422.22541.90822.02131.7839
Bridge31.63561.80231.64411.71491.5857
41.78291.97241.79371.86511.7102
52.01462.31691.94252.03751.8846
Foxes31.69181.85721.65801.73941.6013
41.83562.02971.77251.89281.7264
52.04952.36521.98212.06791.9027
Boat31.45461.67301.41231.48341.3782
41.59241.83471.54781.68461.4954
51.86312.16951.81741.89081.7260

Fig.8

Comparison of convergent curve from five methods"

1 Mala C, Sridevi M. Multilevel threshold selection for image segmentation using soft computing techniques[J]. Soft Computing,2016, 20(5): 1793-1810.
2 Sarkar S, Das S, Chaudhuri S S. Multi-level thresholding with a decomposition-based multi-objective evolutionary algorithm for segmenting natural and medical images[J]. Applied Soft Computing, 2017, 50: 142-157.
3 吕宗伟, 杨世琦, 高阳华, 等. Kapur多级分割的阈值相关性及其快速实现算法[J]. 计算机辅助设计与图形学学报, 2014, 26(11): 2056-2063.
Zhong-wei Lü, Yang Shi-qi, Gao Yang-hua, et al. Fast implementation of Kapur's method for multilevel thresholding based on dependence of thresholds[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(11): 2056-2063.
4 Agrawal S, Panda R, Bhuyan S, et al. Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm[J]. Swarm and Evolutionary Computation, 2013, 11: 16-30.
5 Bhandari A K, Singh V K, Kumar A, et al. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy[J]. Expert Systems with Applicatiions, 2014, 41(7): 3538-3560.
6 Pare S, Kumar A. Bajaj V,et al. A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve[J]. Applied Soft Computing, 2016, 47: 76-102.
7 Li Ling-guo, Sun Li-juan, Guo Jian, et al. Fuzzy multilevel image thresholding based on modified quick artificial bee colony algorithm and local information aggregation[J]. Mathematical Problems in Engineering, 2016, 2016: 1-18.
8 Suresh S, Lal S. Multilevel thresholding based on chaotic darwinian particle swarm optimization for segmentation of satellite images[J]. Applied Soft Computing, 2017, 55: 503-522.
9 Gill H S, Khehra B S, Singh A, et al. Teaching-learning-based optimization algorithm to minimize cross entropy for selecting multilevel threshold values[J]. Egyptian Informatics Journal, 2019, 20(1): 11-25.
10 汤可宗, 柳炳祥, 徐洪焱, 等. 一种基于遗传算法的最小交叉熵阈值选择方法[J]. 控制与决策, 2013, 28(12): 1805-1811.
Tang Ke-zong, Liu Bing-xiang, Xu Hong-yan, et al. A minimum cross entropy threshold selection method based on genetic algorithm[J]. Control and Decision, 2013, 28(12): 1805-1811.
11 康杰红, 马苗. 基于蛙跳算法与Otsu法的图像多阈值分割技术[J]. 云南大学学报:自然科学版, 2012, 34(6): 634-640.
Kang Jie-hong, Ma Miao. Multilevel thresholding segmentation based on shuffled frog leaping algorithm and Otsu method[J]. Journal of Yunnan University(Natural Science Edition), 2012, 34(6): 634-640.
12 巢渊, 戴敏, 陈恺, 等. 基于广义反向粒子群与引力搜索混合算法的多阈值图像分割[J]. 光学精密工程, 2015, 23(3): 879-886.
Chao Yuan, Dai Min, Chen Kai, et al. Image segmentation of multilevel threshold using hybrid PSOGSA with generalized opposition-based learning[J]. Optics and Precision Engineering, 2015,23(3): 879-886.
13 张新明, 尹欣欣, 涂强. 动态迁移和椒盐变异融合生物地理学优化算法的高维多阈值分割[J]. 光学精密工程, 2015, 23(10): 2943-2951.
Zhang Xin-ming, Yin Xin-xin, Tu Qiang. High-dimensional multilevel thresholding based on BBO with dynamic migration and salt & pepper mutation[J]. Optics and Precision Engineering, 2015, 23(10): 2943-2951.
14 刘丁, 张新雨, 陈亚军. 基于多目标人工鱼群算法的硅单晶直径检测图像阈值分割方法[J]. 自动化学报, 2016, 42(3): 431-442.
Liu Ding, Zhang Xin-Yu, Chen Ya-Jun. Monocrystalline silicon diameter detection image threshold segmentation method using multi-objective artificial fish swarm algorithm[J]. Acta Automatica Sinica, 2016, 42(3): 431-442.
15 罗钧, 杨永松, 侍宝玉. 基于改进的自适应差分演化算法的二维Otsu多阈值图像分割[J]. 电子与信息学报, 2019, 41(8): 2017-2024.
Luo Jun, Yang Yong-song, Shi Bao-yu. Multi-threshold image segmentation of 2D Otsu based on improved adaptive differential evolution algorithm[J]. Journal of Electronics and Information Technology, 2019, 41(8): 2017-2024.
16 Yang X S, Deb S. Engineering optimization by cuckoo search[J]. International Journal of Mathematical Modelling & Numerical Optimization, 2010, 1(4): 330-343.
17 Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems[J]. Computer Aided Design, 2011, 43(3): 303-315.
18 Zou F, Chen D B, Xu Q Z. A survey of teaching-learning-based optimization[J]. Neurocomputing, 2019, 335: 266-383.
19 Kaur K, Rattan M, Patterh M S. Optimization of cognitive radio system using simulated annealing[J]. Wireless Personal Communication, 2013, 71(2): 1283-1296.
20 Kotte S, Rajesh Kumar P, Injeti S K. An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm[J]. Ain Shams Engineering Journal, 2018, 9(4): 1043-1067.
21 董丽丽, 于苗, 徐淑琴. 模拟退火粒子群优化投影寻踪的渠道防渗模式评价[J]. 排灌机械工程学报, 2016,34(7): 639-644.
Dong Li-li, Yu Miao, Xu Shu-qin. Evaluation of canal seepage control plans by using simulated annealing particle swarm with projection pursuit[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(7): 639-644.
[1] Feng-li GAO,Min TAO,Xue-yan LI,Xin HE,Fan YANG,Zhuo WANG,Jun-feng SONG,Dan TONG. Accurate segmentation of stroke in CT image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 678-684.
[2] Jun-jun LI,Jian-nong CAO,Bei-bei CHENG,Juan LIAO,Ying-ying ZHU. High spatial resolution remote sensing imagery segmentation based on combination of pixels and multi⁃scaleobjects using spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2098-2108.
[3] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[4] XIAO Ming-yao, LI Xiong-fei, ZHANG Xiao-li, ZHANG Liu. Medical image segmentation algorithm based on multi-scale region growing [J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597.
[5] LIU Zhong-min, LI Zhan-ming, LI Bo-hao, HU Wen-jin. Spectral clustering image segmentation based on sparse matrix [J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[6] ZHAO Fu-qun, ZHOU Ming-quan, GENG Guo-hua. Image threshold segmentation with GA-Otsu method and quantitative identification [J]. 吉林大学学报(工学版), 2017, 47(3): 959-964.
[7] XIAO Ming-yao, LI Xiong-fei. Multi-scale 3D Otsu thresholding algorithm based on Gaussian decomposition [J]. 吉林大学学报(工学版), 2017, 47(1): 255-261.
[8] WANG Pei-zhi, TIAN Di, LONG Tao, LI Di-fei, QIU Chun-ling, LIU Dun-yi. Automatic focusing algorithm for TOF-SIMS zircon sample image [J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
[9] SHEN Xuan-jing, ZHANG He, CHEN Hai-peng, WANG Yu. Fast recursive multi-thresholding algorithm [J]. 吉林大学学报(工学版), 2016, 46(2): 528-534.
[10] ZHENG Xin, PENG Zhen-ming, XING Yan. Novel method of evaluating image segmentation algorithms based on activity degree [J]. 吉林大学学报(工学版), 2016, 46(1): 311-317.
[11] LI Yi-bing, YANG Peng, YE Fang, LIU Dan-dan. Texture image segmentation using hierarchical MRF model based on the interactive potential function and mean-field parameter estimation [J]. 吉林大学学报(工学版), 2015, 45(6): 2075-2079.
[12] LI Xiong-fei, ZHAO Hao-yu, CHEN Xiao, ZHAO Hong-wei. Irregular shape object segmentation based on visual feature [J]. 吉林大学学报(工学版), 2014, 44(4): 1140-1144.
[13] CAO Jian-nong, GUO Jia, WANG Bei, DONG Yu-wei, WANG Ping-lu. Multi-scale method of urban tree canopy clustering recognition in high-resolution images [J]. 吉林大学学报(工学版), 2014, 44(4): 1215-1224.
[14] ZHANG Jin-guo,GUO Hai-tao,WU Jun-peng,LI Yi-tong. Improved minimum symmetric Tsallis cross entropy for segmentation of a sonar image from a small underwater target [J]. 吉林大学学报(工学版), 2014, 44(3): 834-839.
[15] HE Kai, MU Xing, ZOU Gang. Improved segment-based 3D surface stereo matching algorithm [J]. 吉林大学学报(工学版), 2014, 44(01): 219-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!