Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (10): 2486-2500.doi: 10.13229/j.cnki.jdxbgxb20210308

Previous Articles    

Design and experiment of flexible clamping and conveying device for bionic ear picking of fresh corn

Guang-qiang ZHU1(),Tian-yu LI1,Fu-jun ZHOU2()   

  1. 1.College of Engineering,Northeast Agricultural University,Harbin 150030,China
    2.College of Mechanical Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450046,China
  • Received:2021-08-20 Online:2022-10-01 Published:2022-11-11
  • Contact: Fu-jun ZHOU E-mail:zhuguangqiang123@126.com;fjzhou@163.com

Abstract:

Aiming at the problems of stem clamping and conveying, such as broken stems and blockages in the process of fresh corn harvesting, a bionic ear picking flexible clamping and conveying device with simple structure and stable clamping and conveying was designed. First, on the basis of analyzing the holding the stalk, bending and breaking the ears from top to bottom, researching the principle of bionic ear picking, the focus is on the operating parameters that affect the flexible stem clamping and conveying device. The grading test method is adopted for the device. The bench test was designed with a single factor, and it was obtained that the working efficiency was the best when the unit forward speed was 1.2 m/s and the cutter speed was 420 r/min. Secondly, fixing the two parameters unchanged and taking the speed of clamping conveyor belt, the inclination angle of clamping mechanism and the gap between clamping conveyor belt were taken as test factors, and the stem breaking rate and clamping accuracy were taken as test indexes, using the quadratic regression orthogonal rotation combination test method to carry out the bench test. The mathematical model of factors and indicators is established through Design-Expert8.0.6 software, and the factors are optimized after the constraints are added. The test results show that when the speed of the clamping conveyor belt is 342 r/min, the inclination angle of the clamping mechanism is 19°, and the clamping conveyor belt gap is 6.0 mm, the average value of stem broken rate is 0.46%, and the average value of clamping accuracy is 94.0%, which show a good working performance. Finally, a field verification experiment was carried out. The results show that the average stalk breaking rate was 0.55% and the average clamping accuracy rate was 93.0%, which were basically consistent with the optimized results. The device designed in this paper reduces the stalk breakage, has high stability, and meets the requirements for harvesting fresh corn ears.

Key words: agricultural mechanization engineering, fresh corn, bionic ear picking flexible clamping and conveying, experimental device, optimization analysis

CLC Number: 

  • S233.4

Fig.1

Device test bench structure diagram"

Fig.2

Structure of flexible clamping conveying"

Fig.3

Starting angle structural diagram"

Fig.4

A concave circular disc with a poking wheel"

Fig.5

Pull wheel"

Fig.6

Schematic diagram of clamping conveying mechanism"

Fig.7

Stem compression strength"

Fig.8

Shear load displacement test and curve"

Fig.9

Schematic diagram of divider"

Fig.10

Cutter diagram"

Table 1

Determination of parameters of Jingkenuo 2010"

参数项目均值参数项目均值
株高/mm2457籽粒含水率/%70
最低结穗高度/mm895果穗根部直径/mm45
果穗长度/mm189结穗位茎秆直径/mm36

Fig.11

Physical chart of test bed"

Table 2

Actual value and code of variable"

编码值因 素

夹持输送带

转速/(r·min-1

夹持机构

倾角/(°)

夹持输送带

间隙/mm

1.682664.82011.3
1563.1317.4910.08
041413.88.3
-1264.8710.116.52
-1.682163.27.65.3

Table 3

Experiment design and results"

编 号因素目标函数

夹持输送带转速

Z1/(°)

夹持机构倾角

Z2/(°)

夹持输送带间隙

Z3/(m·s-1

茎秆断茎率

Y1/%

夹持准确率

Y2/%

1264.8710.116.520.4794.11
2563.1310.116.520.2795.98
3264.8717.496.520.7292.45
4563.1317.496.520.7593.1
5264.8710.1110.080.4293.13
6563.1310.1110.080.5595.65
7264.8717.4910.080.1395.6
8563.1317.4910.080.6494.98
9163.213.88.30.3894.37
10664.813.88.30.7394.95
114147.68.30.2194.65
12414208.30.7593.68
1341413.85.30.5493.18
1441413.811.30.2193.68
1541413.88.30.2793.9
1641413.88.30.2293.87
1741413.88.30.1492.19
1841413.88.30.3792.89
1941413.88.30.4693.12
2041413.88.30.3192.43
2141413.88.30.2593.41
2241413.88.30.3192.76
2341413.88.30.2994.29

Table 4

Analysis of variance between cutting rate and stem breaking rate"

来源平方和自由度均方FP
模型0.68/0.659/60.076/0.119.15/12.090.0003***/<0.0001***
Z10.12/0.121/10.12/0.1214.44/13.400.0022***/0.0021***
Z20.18/0.181/10.18/0.1821.44/19.900.0005***/0.0004***
Z30.096/0.0961/10.096/0.09611.58/10.750.0047***/0.0047***
Z1Z20.12/0.121/10.12/0.1214.19/13.170.0024***/0.0023***
Z1Z30.0251/10.0253.050.1042
Z2Z30.00661/10.00660.800.3880
Z120.096/0.0961/10.096/0.09611.61/10.740.00471***/0.0047***
Z220.042/0.0421/10.042/0.0425.04/4.660.0427**/0.0464**
Z320.0031/10.0030.390.5440
残差0.11/0.1413/160.0082/0.0089
失拟项0.042/0.0775/80.0085/0.00971.03/1.180.4593/0.4092
纯误差0.065/0.0658/80.0082/0.0082
总和0.7922

Table 5

Analysis of variance of clamping accuracy"

来源平方和自由度均方FP
模型22.69/22.529/72.52/3.225.87/8.390.0023***/0.0003***
Z12.16/2.161/12.16/2.165.02/5.620.0431**/<0.0316**
Z22.66/2.661/12.66/2.666.19/6.920.0272**/0.0189**
Z31.50/1.501/11.50/1.503.50/3.910.0841*/0.0665*
Z1Z22.41/2.411/12.41/2.415.61/6.280.0340**/0.0242**
Z1Z30.0441/10.0440.100.7553
Z2Z35.07/5.071/15.07/5.0711.81/13.220.0044***/0.0024***
Z124.39/4.371/14.39/4.3710.21/11.400.0070***/0.0042***
Z124.42/4.411/14.41/4.4110.29/11.490.0069***/0.0040***
Z120.121/10.130.300.5918
残差5.58/5.7513/150.43/0.38
失拟项1.50/1.675/70.30/0.240.59/0.470.7099/0.8327
纯误差4.08/4.088/80.51/0.51
总和28.1722

Fig.12

Two-factor response surface for stem breaking rate"

Fig.13

Field experiment"

1 井旭源, 唐春双, 于琳, 等. 鲜食玉米机械化收获发展现状[J]. 现代化农业, 2020, 41(10): 61-62.
Jing Xu-yuan, Tang Chun-shuang, Yu Lin, et al. Development status of mechanized harvesting of fresh corn[J]. Modern Agriculture, 2020, 41(10): 61-62.
2 Rogovskii I L, Liubarets 1 B S, Voinash S A,et al. Research of diagnostic of combine harvesters at levels of hierarchical structure of systems and units of hydraulic system[J]. Journal of Physics: Conference Series, 2020, 1679(4): No. 042038.
3 纪晓琦, 耿端阳, 姚艳春, 等. 玉米收获机激振摘穗装置设计与试验[J]. 农业机械学报, 2020, 51(): 126-133.
Ji Xiao-qi, Geng Duan-yang, Yao Yan-chun, et al. Design and test of the corn harvester's excitation vibration ear picking device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(Sup.2): 126-133.
4 刘春鸽, 张喜瑞, 刘桐利, 等. 我国甜玉米收获机的发展现状[J]. 内燃机与配件, 2018, 38(15): 224-225.
Liu Chun-ge, Zhang Xi-rui, Liu Tong-li, et al. Developmentstatus of sweet corn harvesting machinery in China[J]. Internal Combustion Engine & Parts, 2018, 38(15): 224-225.
5 Vodounnou J H, Ajav E A, Bagan G C, et al. Development and performance evaluation of a small-scale maize harvester for developing countries[J]. Journal of Experimental Agriculture International, 2020, 42(8): 144-156.
6 刘传鑫.鲜食玉米收获割台关键技术研究[D]. 长春:吉林大学生物与农业工程学院,2019.
Liu Chuan-xin. Study on the key technology of fresh corn harvesting header[D]. Changchun: College of Biology and Agricultural Engineering, Jilin University, 2019.
7 耿端阳,李玉环,何珂,等. 立辊式玉米收获机割台间隙夹持输送装置设计与试验[J]. 农业机械学报,2017, 48(11): 130-136.
Geng Duan-yang, Li Yu-huan, He Ke, et al. Design and experiment on gripping delivery mechanism for vertical-rollers type of corn harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 130-136.
8 张宗玲, 韩增德, 刘立晶, 等. 玉米穗茎兼收割台夹持输送装置参数优化[J]. 农业机械学报, 2018, 49(3): 114-121.
Zhang Zong-ling, Han Zeng-de, Liu Li-jing, et al. Parameters optimization for gripping and delivering device of corn harvester for reaping both corn stalk and spike[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 114-121.
9 张莉. 新型仿生玉米摘穗机构理论分析与仿真研究[D]. 长春: 吉林大学生物与农业工程学院,2015.
Zhang Li. Theoretical analysis and simulation study of a new bionic corn ear picking mechanism[D]. Changchun: College of Biology and Agricultural Engineering, Jilin University, 2015.
10 辛尚龙. 立辊式玉米摘穗机理与关键技术研究[D]. 兰州: 甘肃农业大学机电工程学院, 2020.
Xin Shang-long. Study on mechanism and key technology of vertical roller corn ear picking[D]. Lanzhou: School of Mechanical and Electrical Engineering, Gansu Agricultural University, 2020.
11 范国强, 杨庆璐, 张晓辉, 等. 烟草夹持式智能打顶机设计与试验[J]. 农业机械学报, 2017, 48(7): 121-126.
Fan Guo-qiang, Yang Qing-lu, Zhang Xiao-hui, et al. Design and test of intelligent tobacco topping machine with clamping belt[J]. Beijing: Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 121-126.
12 中国农业机械化科学研究院.农业机械设计手册:上册[M]. 北京:中国农业科学技术出版社,2007.
13 Shinners K J, Boettcher G C, Hoffman D S, et al. Single-pass harvest of corn grain and stover:performance of three harvester configurations[J]. Transactions of the ASABE, 2009, 52(1): 51-60.
14 Johnson P C, Clementson C L, Mathanker S K, et al. Cutting energy characteristics of Miscanthus giganteus stems with varying oblique angle and cutting speed[J]. Biosystems Engineering, 2012, 112(1): 42-48.
15 耿端阳,李玉环,孟凡虎,等.玉米收获机多棱立辊式摘穗装置设计与试验[J]. 农业机械学报,2017, 48(3): 84-91.
Geng Duan-yang, Li Yu-huan, Meng Fan-hu, et al. Design and experiment of corn harvester polygonal vertical-rollers snapping means[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(3): 84-91.
16 郝付平, 陈志, 张子瑞, 等. 拨禾星轮式玉米收获台设计与试验[J]. 农业机械学报,2014, 45(6): 112-117.
Hao Fu-ping, Chen Zhi, Zhang Zi-rui, et al. Design and experiment of corn harvester head with Reel Star wheel[J]. Transactions of the Chinese Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 112-117.
17 张宗玲. 新型玉米穗茎联合收获机割台的研制[D].北京: 中国农业大学工学院,2018.
Study on A New Corn Combine Harvester Header for Reaping Both Corn Stalk and Spike[D]. Beijing: College of Engineering,China Agricultural University, 2018.
18 李天宇. 鲜食玉米柔性低损摘穗装置设计与试验[D]. 哈尔滨:东北农业大学工程学院, 2019.
Li Tian-yu. Design and experiment of flexible and low loss ear picking device for fresh corn[D]. Harbin: College of Engineering, Northeast Agricultural University, 2019.
19 刘静, 刁培松, 张道林, 等. 玉米收获机分禾器的研究[J]. 农机化研究, 2007, 28(11): 145-146, 149.
Liu Jing, Diao Pei-song, Zhang Dao-lin. Research on the nearside divider of corn harvest[J]. Journal of Agricultural Mechanization Research, 2007, 28(11): 145-146, 149.
20 吴鸿欣, 陈志, 韩增德, 等. 玉米植株抗弯特性对分禾器结构的影响分析[J].农业机械学报, 2011, 42(): 6-9.
Wu Hong-xin, Chen Zhi, Han Zeng-de, et al.Effect analysis of bending properties of corn plants on divider structure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(): 6-9.
21 王优, 张强, 于路路. 玉米摘穗装置的应用现状与展望[J]. 农机化研究, 2011, 33(1): 228-231.
Wang You, Zhang Qiang, Yu Lu-lu. Application status and prospect of maize maize picking device[J]. Harbin: Journal of Agricultural Mechanization Research, 2011, 33(1): 228-231.
22 张宗玲, 韩增德, 李树君, 等. 玉米穗茎兼收割台切割夹持输送装置仿真与试验[J]. 农业机械学报,2016, 47(): 215-221.
Zhang Zong-ling, Han Zeng-de, Li Shu-jun, et al. Simulation and experiment of cutting, clamping and conveying device for corn ear stem and harvester[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(Sup.1): 215-221.
23 杨庆璐. 烟草夹持式智能打顶机的研制与试验[D]. 泰安:山东农业大学机械与电子工程学院, 2018.
Yang Qing-lu. Development and test of tobacco clamping intelligent topping machine[D]. Taian: School of Mechanical and Electronic Engineering, Shandong Agricultural University, 2018.
24 董瑞. 青贮玉米收获割台切割过程仿真及试验研究[D]. 长春:吉林大学生物与农业工程学院,2020.
Dong Rui. Simulation and experimental study on cutting process of silage corn harvesting header [D]. Changchun: College of Biology and Agricultural Engineering, Jilin University, 2020.
25 Wang Chen, Cao Shun-kun, Gao Kui-zeng, et al. Intelligent control system for corn harvester[J]. Journal of Physics: Conference Series, 2021, 1798(1): No. 012011.
26 贾洪雷, 王刚, 赵佳乐, 等. 间距自适应差速玉米摘穗辊设计与试验[J]. 农业机械学报,2015, 46(3): 97-102.
Jia Hong-lei, Wang Gang, Zhao Jia-le, et al.Design and experiment of spacing-adaptive differential snapping rollers for corn harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 97-102.
27 王刚, 贾洪雷, 赵佳乐, 等. 玉米留高茬切割器的设计及留茬效果试验[J]. 农业工程学报, 2014, 30(23):43-49.
Wang Gang, Jia Hong-lei, Zhao Jia-le, et al. Design of corn high-stubble cutter and experiments of stubble retaining effects[J]. Beijing: Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 43-49.
28 赵淑红, 谭贺文, 王加一, 等. 多功能集成式播种开沟器的设计与试验[J]. 农业工程学报, 2018, 34(11):58-67.
Zhao Shu-hong, Tan He-wen, Wang Jia-yi, et al. Design and experiment of multifunctional integrated seeding opener[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 58-67.
29 赵艳忠, 王运兴, 刘海涛, 等. 带状深松灭茬机灭茬部件设计与试验[J]. 农业机械学报, 2018, 49(3):94-103.
Zhao Yan-zhong, Wang Yun-xing, Liu Hai-tao, et al. Design and test of stubble-breaking components on strip subsoiling and stubble-breaking machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 49(3): 94-103.
30 陈洋,连永祥,李新. 二次回归正交旋转组合设计优化废橡胶辊筒粉碎机效率[J]. 沈阳化工大学学报,2012, 26(3):251-254.
Chen Yang, Lian Yong-xiang, Li Xin.Rubber roller mill efficiency with the method of quadratic regression orthogonal rotation[J]. Journal of Shenyang University of Chemical Technology, 2012, 26(3): 251-254.
31 肖宝兰,俞小莉,韩松,等. 翅片参数对车用中冷器流动传热性能的影响[J]. 浙江大学学报: 工学版, 2010, 44(11): 2164-2168, 2178.
Xiao Bao-lan, Yu Xiao-li, Han Song,et al.The study of effects of fin parameters on thermal hydraulic performance of a vehicular charged air cooler[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(11): 2164-2168, 2178.
32 葛宜元, 梁秋艳, 王桂莲. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨: 哈尔滨工业大学出版社,2015.
33 谭贺文. 一种组合式播种开沟器的设计与试验[D].哈尔滨:东北农业大学工程学院,2018.
Tan He-wen. Design and test of a combined sowing furrow opener[D]. Harbin: College of Engineering,Northeast Agricultural University, 2018.
34 玉米收获机械技术条件 [S].
[1] Shan ZENG,Deng-pan HUANG,Wen-wu YANG,Wei-jian LIU,Zhi-qiang WEN,Li ZENG. Design and test of the chassis of triangular crawler reclaiming rice harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1943-1950.
[2] Guo-liang WEI,Qing-song ZHANG,Biao WANG,Kun HE,Qing-xi LIAO. Analysis and experiment on parameters of plough body of rapeseed direct seeder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1709-1718.
[3] Rong-qing LIANG,Bo ZHONG,He-wei MENG,Zhi-min SUN,Za KAN. Design of 4QJ⁃3 type pickup header of silage oat [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1887-1896.
[4] Jia-cheng YUAN,Chang WANG,Kun HE,Xing-yu WAN,Qing-xi LIAO. Effect of components mass ratio under sieve on cleaning system performance for rape combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1897-1907.
[5] Zhao XUE,Jun FU,Zhi CHEN,Feng-de WANG,Shao-ping HAN,Lu-quan REN. Optimization experiment on parameters of chopping device of forage maize harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 739-748.
[6] Jun FU,Yi-chen ZHANG,Chao CHENG,Zhi CHEN,Xin-long TANG,Lu-quan REN. Design and experiment of bow tooth of rigid flexible coupling for wheat threshing [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 730-738.
[7] Chao CHENG,Jun FU,Fu-ping HAO,Zhi CHEN,De-yi ZHOU,Lu-quan REN. Effect of motion parameters of cleaning screen on corn cob blocking law [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 351-360.
[8] Chao CHENG,Jun FU,Xin⁃long TANG,Zhi CHEN,Lu⁃quan REN. Effects of vibration mode on interface adhesion law of rice threshed mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1228-1235.
[9] FU Jun,QIAN Zhi-hui,YIN Wei,WANG Jia-jia,REN Lu-quan. Experimental study of friction and tensile properties of wheat [J]. 吉林大学学报(工学版), 2015, 45(2): 501-507.
[10] WANG Li-li|YANG Yin-sheng|WANG Zhong-jiang. Optimization on heating and insulating system for northern large-scale biogas project [J]. 吉林大学学报(工学版), 2011, 41(4): 1183-1188.
[11] WANG Hui-Hui, SUN Yong-Hai, LIU Jing-Jing, ZHANG Ting-Ting, WANG Xiao-Dan, FANG Xu-Jun. Evaluation of maturity grading of fresh corn ears based on twodimensional discrete wavelet [J]. 吉林大学学报(工学版), 2011, 41(02): 574-0578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!