Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2735-2745.doi: 10.13229/j.cnki.jdxbgxb20210348

Previous Articles    

Discrete element simulation and experiment of mechanized harve- sting and chopping process for fodder rape crop harvest

Xing-yu WAN1(),Qing-xi LIAO1,2,Ya-jun JIANG1,Yi-yin SHAN1,Yu ZHOU1,Yi-tao LIAO1,2()   

  1. 1.College of Engineering,Huazhong Agricultural University,Wuhan 430070,China
    2.Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River,Ministry of Agriculture and Rural Affairs,Wuhan 430070,China
  • Received:2021-04-21 Online:2022-11-01 Published:2022-11-16
  • Contact: Yi-tao LIAO E-mail:wanxy@mail.hzau.edu.cn;liaoetao@mail.hzau.edu.cn

Abstract:

Rape crop has great potential as Fodder, which is a new way of using its tender, juicy, nutritious stem. In order to develop the mechanized harvesting technology for fodder rape crop, a study on discrete element simulation of the stem chopping for rape crop in the flowering stage was carried out. By utilizing the three-point bending method, the discrete element simulation parameters of fodder rape stem in the flowering stage were calibrated based on the Response Surface Methodology(RSM). The relative error between the maximum bending failure force obtained in the simulation with the calibrated parameters and that obtained by the actual test was 0.12%, indicating the calibrated discrete element simulation parameters were accurate. As further use of the calibrated discrete element parameters, the discrete element simulation experiment of cutting process of the mechanized harvesting for fodder rape was carried out. The simulation results showed that the optimal working parameter combination of the chopping device was the feeding roller speed 467 r/min and the cutter-head speed 770 r/min. Under the optimal working parameter combination condition, the qualified rate of stem chopped length in the simulation and bench experiment was 89.52% and 89.86%, respectively.

Key words: agricultural mechanization engineering, fodder rape crop, discrete element simulation, parameters calibration, chopping

CLC Number: 

  • S817.11

Fig.1

Basic structure of forage rape harvester and its key components"

Fig.2

Bending failure test of stem"

Fig.3

Bending failure model of fodder rape stem"

Table 1

Bonding parameters of bending failure simulation model for fodder rape stem particle in flowering stage"

类别参 数数值
本征参数茎秆密度/(kg?m-3927a
钢板密度/(kg?m-37850a
茎秆泊松比0.33a
钢板泊松比0.30a
钢板剪切模量/Pa7.94×1010a
接触参数茎秆间碰撞恢复因数0.55a
茎秆间静摩擦因数0.39a
茎秆间滚动摩擦因数0.04a
茎秆-钢碰撞恢复因数0.55a
茎秆-钢静摩擦系数因数0.25a
茎秆-钢滚动摩擦因数0.06a
粘结参数

茎秆颗粒法向接触刚度

x1/(N·m-1

3×109~9×109b

茎秆颗粒切向接触刚度

x2/(N·m-1

3×108~9×108b
茎秆颗粒临界法向应力x3/MPa30~70b
茎秆颗粒临界切向应力x4/MPa3~8b

Table 2

Coding of bonding parameters"

编码值粘结模型参数
x1/(10-9·N·m-1x2/(10-8·N·m-1x3/MPax4/MPa
-1.5463.003.0030.03.00
-14.064.0637.13.88
06.006.0050.05.50
17.947.9462.97.12
1.5469.009.0070.08.00

Table 3

Response surface test design and results of bonding parameters"

序号x1/(10-9·N·m-1x2/(10-8·N·m-1x3/MPax4/MPa破坏力模拟值f/N破坏力相对误差值Δf/N
14.067.9462.93.8861.5530.56
24.064.0662.97.1261.8530.22
37.944.0662.97.1289.090.51
46.006.0070.05.5086.362.57
57.944.0662.93.8886.222.73
66.006.0050.08.0086.262.69
74.064.0637.17.1261.6830.42
86.006.0030.05.5086.462.46
97.947.9462.93.88111.3925.67
106.003.0050.05.5062.0330.02
117.947.9437.13.88111.1925.44
126.006.0050.03.0085.613.42
139.006.0050.05.50105.5319.05
143.006.0050.05.5047.8845.98
154.067.9437.17.1260.9531.24
166.009.0050.05.5080.119.62
176.006.0050.05.5085.163.93
184.067.9437.13.8861.9030.17
197.944.0637.17.1289.130.55
206.006.0050.05.5085.763.25
216.006.0050.05.5088.450.21
224.067.9462.97.1261.0531.13
237.947.9462.97.12111.5225.81
244.064.0662.93.8861.7830.30
254.064.0637.13.8860.7431.48
267.947.9437.17.12110.0724.18
277.944.0637.13.8886.182.78

Table 4

Analysis of variance of error of bending failure for response surface quadratic model"

方差来源自由度均方值FP
总和26
模型14260.546.770.0010
x111217.0931.620.0001
x21152.963.970.0695
x310.0338.50×10-40.9772
x411.420.0370.8508
x1x21431.9111.220.0058
x1x310.420.0110.9186
x1x411.760.0460.8342
x2x310.610.0160.9017
x2x411.790.0460.8329
x3x410.194.86×10-30.9456
x1211384.8635.98<0.0001
x221453.3511.780.0050
x3210.174.33×10-30.9486
x4210.0691.80×10-30.9668
残差1238.49
失拟项1045.5814.850.0647
纯误差23.07

Fig.4

Simulated and actual bending failure load-displacement curves"

Fig.5

Simulated and actual stem bending failure process"

Fig.6

Harvest flowering forage rape crop and stem sample"

Fig.7

Stem chopping test bench and simulation model"

Fig.8

Stem chopping results from bench test and simulation"

Table 5

Range of working parameter in the test"

编码值喂入辊转速n1/(r·min-1切碎器转速n2/(r·min-1
-1.414400600
-1429.29629.29
0500700
1570.71770.71
1.414600800

Table 6

Response surface test design and results of working parameter"

序号n1n2合格率Y1/%
1429.29629.2988.32
2570.71629.2987.86
3429.29770.7189.83
4570.71770.7189.28
540070089.18
660070088.45
750060087.73
850080089.78
950070088.96
1050070088.94
1150070088.93
1250070088.94
1350070088.96
1 张哲, 殷艳, 刘芳, 等. 我国油菜多功能开发利用现状及发展对策[J]. 中国油料作物学报, 2018, 40(5): 618-623.
Zhang Zhe, Yin Yan, Liu Fang, et al. Current situation and development countermeasures of Chinese rapeseed multifunctional development and utilization[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 618-623.
2 毛鑫,刘桂琼,姜勋平,等. 饲料油菜鲜饲对哺乳母羊和羔羊体质量和血清生化指标的影响[J]. 河南农业科学, 2020, 49(5): 161-167.
Mao Xin, Liu Gui-giong, Jiang Xun-ping, et al. Effects of feeding fresh forage rape on body weight and serum parameters of lactating ewes and their lambs[J]. Journal of Henan Agricultural Sciences, 2020, 49(5): 161-167.
3 易四凤, 杨华, 余陵峰, 等. 新鲜饲料油菜对肉牛育肥效果的研究[J]. 中国饲料, 2017(20): 39-43.
Yi Si-feng, Yang Hua, Yu Ling-feng, et al. Study on fresh Brassica napus L. on fattening effects in beef cattle[J]. China Feed, 2017(20): 39-43.
4 汪波, 宋丽君, 王宗凯, 等. 我国饲料油菜种植及应用技术研究进展[J]. 中国油料作物学报, 2018, 40(5): 695-701.
Wang Bo, Song Li-jun, Wang Zong-kai, et al. Production and feeding technology of fodder rapeseed in china[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 695-701.
5 杨雪海, 张巍, 赵娜, 等. 油菜华油杂62不同生长期氨基酸组成及营养价值评价[J]. 中国油料作物学报, 2017, 39(2): 197-203.
Yang Xue-hai, Zhang Wei, Zhao Na, et al. Forage amino acid composition and nutrition of Brassica napus L.cv Huayouza 62 in different growth stages[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(2): 197-203.
6 赵娜,杨雪海,魏金涛,等. 饲用油菜的营养成分分析及其在山羊瘤胃降解特性研究[J]. 草业学报, 2020, 29(5): 50-57.
Zhao Na, Yang Xue-hai, Wei Jin-tao, et al. Nutritional composition of forage rape and its rumen degradation characteristics in goats[J]. Acta Prataculturac Sinica, 2020, 29(5): 50-57.
7 蒋亚军,廖宜涛,廖庆喜. 冬春鲜喂饲用油菜收获机滚刀式切碎装置设计与试验[J]. 农业机械学报, 2019, 50(2): 102-111.
Jiang Ya-jun, Liao Yi-tao, Liao Qing-xi. Design and experiment on cylinder-type chopping device of harvester for fodder rapeseed in winter and spring[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 102-111.
8 谢方平,吴正阳,王修善,等. 基于无侧限抗压强度试验的土壤离散元参数标定[J]. 农业工程学报, 2020, 36(13): 39-47.
Xie Fang-ping, Wu Zheng-yang, Wang Xiu-shan, et al. Calibration of discrete element parameters of soils based on unconfined compressive strength test[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 39-47.
9 赵淑红,王加一,陈君执,等. 保护性耕作拟合曲线型深松铲设计与试验[J]. 农业机械学报, 2018, 49(2): 82-92.
Zhao Shu-hong, Wang Jia-yi, Chen Jun-zhi, et al. Design and experiment of fitting curve subsoiler of conservation tillage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 82-92.
10 Barr J B, Desbiolles J M A, Fielke J M, et al. Development and field evaluation of a high-speed no-till seeding system[J]. Soil and Tillage Research, 2019, 194: 104337.
11 廖庆喜,张朋玲,廖宜涛,等. 基于EDEM的离心式排种器排种性能数值模拟[J]. 农业机械学报, 2014, 45(2): 109-114.
Liao Qing-xi, Zhang Peng-ling, Liao Yi-tao, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 109-114.
12 刘彩玲,王亚丽,都鑫,等. 摩擦复充种型孔带式水稻精量排种器充种性能分析与验证[J]. 农业工程学报, 2019, 35(4): 29-36.
Liu Cai-ling, Wang Ya-li, Du Xin, et al. Performance analysis and verification of cell-belt rice precision seed-metering based on friction and repeated filling principle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 29-36.
13 钱震杰,金诚谦,袁文胜,等. 柔性脱粒齿杆与谷物含摩擦打击动力学模型[J]. 吉林大学学报: 工学版, 2021, 51(3): 1121-1130.
Qian Zhen-jie, Jin Cheng-qian, Yuan Wen-sheng, et al. Frictional impact dynamics of threshing process between flexible teeth and grains[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1121-1130.
14 马彦华,宋春东,宣传忠,等. 苜蓿秸秆压缩仿真离散元模型参数标定[J]. 农业工程学报, 2020, 36(11): 22-30.
Ma Yan-hua, Song Chun-dong, Xuan Chuan-zhong, et al. Parameters calibration of discrete element model for alfalfa straw compression simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 22-30.
15 耿端阳,孙延成,牟孝栋,等. 基于差速辊的青贮玉米籽粒破碎仿真试验及优化[J]. 吉林大学学报: 工学版, 2022, 52(3): 693-702.
Geng Duan-yang, Sun Yan-cheng, Mou Xiao-dong, et al. Simulation test and optimization of grain breakage of silage maize based on differential roller[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 693-702.
16 王扬,吕凤妍,徐天月,等. 大豆籽粒形状和尺寸分析及其建模[J]. 吉林大学学报: 工学版, 2018, 48(2): 507-517.
Wang Yang, Feng-yan Lyu, Xu Tian-yue, et al. Shape and size analysis of soybean kernel and modeling[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(2): 507-517.
17 Su Z, Li Y, Dong Y, et al. Simulation of rice threshing performance with concentric and non-concentric threshing gaps[J]. Biosystems Engineering, 2020, 197: 270-284.
18 付宏,吕游,李艳双,等. 基于离散元法的玉米脱粒过程分析[J]. 吉林大学学报: 工学版, 2012, 42(4): 997-1002.
Fu Hong, You Lyu, Li Yan-shuang, et al. Analysis for corn threshing process based DEM[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(4): 997-1002.
19 Mao H, Wang Q, Li Q. Modelling and simulation of the straw-grain separation process based on a discrete element model with flexible hollow cylindrical bonds[J]. Computers and Electronics in Agriculture, 2020, 170: 105229.
20 王宪良,胡红,王庆杰,等. 基于离散元的土壤模型参数标定方法[J]. 农业机械学报, 2017, 48(12): 78-85.
Wang Xian-liang, Hu Hong, Wang Qing-jie, et al. Calibration method of soil contact characteristic parameters based on DEM theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 78-85.
21 丁启朔,任骏,Belal Eisa Adam,等. 湿粘水稻土深松过程离散元分析[J]. 农业机械学报, 2017, 48(3): 38-48.
Ding Qi-shuo, Ren Jun, Belal Eisa Adam, et al. DEM analysis of subsoiling process in wet clayey paddy soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 38-48.
22 李建桥,黄晗,王颖,等. 松软地面机器系统研究进展[J]. 农业机械学报, 2015, 46(5): 306-320.
Li Jian-qiao, Huang Han, Wang Ying, et al. Development on research of soft-terrain machine systems[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 306-320.
23 王笑丹,王洪美,韩云秀,等. 基于离散元法的牛肉咀嚼破碎模型构建[J]. 农业工程学报, 2016, 32(4): 228-234.
Wang Xiao-dan, Wang Hong-mei, Han Yun-xiu, et al. Structure of beef chewing model based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 228-234.
24 张锋伟,宋学锋,张雪坤,等. 玉米秸秆揉丝破碎过程力学特性仿真与试验[J]. 农业工程学报, 2019, 35(9): 58-65.
Zhang Feng-wei, Song Xue-feng, Zhang Xue-kun, et al. Simulation and experiment on mechanical characteristics of kneading and crushing process of corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 58-65.
25 Horabik J, Molenda M. Parameters and contact models for DEM simulations of agricultural granular materials: a review[J]. Biosystems Engineering, 2016,147: 206-225.
26 廖宜涛,廖庆喜,周宇,等. 饲料油菜薹期收获茎秆破碎离散元仿真参数标定[J]. 农业机械学报, 2020, 51(6): 73-82.
Liao Yi-tao, Liao Qing-xi, Zhou Yu, et al. Parameters calibration of discrete element model of fodder rape crop harvest in bolting stage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 73-82.
27 Liao Y, Wang Z, Liao Q, et al. Calibration of discrete element parameters of fodder rape crop stem at flowering stage[C/OL]. [2020-05-18].
28 中国农业机械化科学研究院. 农业机械设计手册(下册)[M]. 北京: 中国农业科学技术出版社, 2007.
29 Wan X Y, Liao Q X, Jiang Y J, et al. Cattle feeding experiment and chopping device parameter determination for mechanized harvesting of forage rape crop[J]. Transactions of the ASABE, 2021, 64(2): 715-725.
30 郭茜,张西良,徐云峰,等. 基于EDEM的番茄秸秆切割性能仿真及试验研究[J]. 排灌机械工程学报, 2018, 36(10): 1017-1022.
Guo Qian, Zhang Xi-liang, Xu Yun-feng, et al. EDEM-based simulation and experiment on tomato cane straw cutting performance[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(10): 1017-1022.
[1] Shan ZENG,Deng-pan HUANG,Wen-wu YANG,Wei-jian LIU,Zhi-qiang WEN,Li ZENG. Design and test of the chassis of triangular crawler reclaiming rice harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1943-1950.
[2] Guo-liang WEI,Qing-song ZHANG,Biao WANG,Kun HE,Qing-xi LIAO. Analysis and experiment on parameters of plough body of rapeseed direct seeder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1709-1718.
[3] Guang-qiang ZHU,Tian-yu LI,Fu-jun ZHOU. Design and experiment of flexible clamping and conveying device for bionic ear picking of fresh corn [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2486-2500.
[4] Rong-qing LIANG,Bo ZHONG,He-wei MENG,Zhi-min SUN,Za KAN. Design of 4QJ⁃3 type pickup header of silage oat [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1887-1896.
[5] Jia-cheng YUAN,Chang WANG,Kun HE,Xing-yu WAN,Qing-xi LIAO. Effect of components mass ratio under sieve on cleaning system performance for rape combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1897-1907.
[6] Zhao XUE,Jun FU,Zhi CHEN,Feng-de WANG,Shao-ping HAN,Lu-quan REN. Optimization experiment on parameters of chopping device of forage maize harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 739-748.
[7] Jun FU,Yi-chen ZHANG,Chao CHENG,Zhi CHEN,Xin-long TANG,Lu-quan REN. Design and experiment of bow tooth of rigid flexible coupling for wheat threshing [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 730-738.
[8] Chao CHENG,Jun FU,Fu-ping HAO,Zhi CHEN,De-yi ZHOU,Lu-quan REN. Effect of motion parameters of cleaning screen on corn cob blocking law [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 351-360.
[9] Chao CHENG,Jun FU,Xin⁃long TANG,Zhi CHEN,Lu⁃quan REN. Effects of vibration mode on interface adhesion law of rice threshed mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1228-1235.
[10] FU Jun,QIAN Zhi-hui,YIN Wei,WANG Jia-jia,REN Lu-quan. Experimental study of friction and tensile properties of wheat [J]. 吉林大学学报(工学版), 2015, 45(2): 501-507.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!