Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (12): 3388-3396.doi: 10.13229/j.cnki.jdxbgxb.20220084

Previous Articles    

Prediction of fracture of aluminum alloy profiles in roll bending considering anisotropy

Chun-guo LIU1,2(),Zi-tong LI1,2,Xue-guang ZHANG3,Ming LI1,2   

  1. 1.Roll-forging Research Institute,Jilin University,Changchun 130022,China
    2.School of Materials Science and Engineering,Jilin University,Changchun 130022,China
    3.Engineering Planning and Development Department,CRRC Changchun Railway Vehicles Co. ,Ltd. ,Changchun 130051,China
  • Received:2022-01-22 Online:2023-12-01 Published:2024-01-12

Abstract:

An anisotropic roll bending fracture prediction method was proposed for 6005A aluminum alloy profile. Von Mises, Hill48 and Yld2004-18p yield criteria were used to describe the anisotropy of aluminum alloy respectively. Model parameters were determined by experiments and crystal finite element simulation. The results of simulation and roll bending test show that the predicted error of Mises yield criterion is more than 15%, Hill48 yield criterion is less than 5% and Yld2004-18p yield criterion is less than 3%. It shows that the finite element model coupled with the anisotropic yield criterion and the continuous damage criterion can predict the fracture behavior of aluminum alloy profiles in roll bending more accurately than the isotropic model.

Key words: material synthesis and processing technology, profiles roll bending, anisotropy, fracture criterion, crystal plasticity

CLC Number: 

  • TG386

Fig.1

Inverse pole figure (IPF) and pole figure of profile elevation"

Fig.2

Inverse pole figure (IPF) and pole figure of profile plane"

Fig.3

Representative volume element of 6005A"

Fig.4

Comparison of true stress-strain curves with CPFEM"

Fig.5

Anisotropic yield surfaces under different stress states in different planes"

Table 1

Yld2004-18p yield criterion parameters"

参数取值参数取值参数取值
c12'1.0223c44'0.9314c230.9932
c13'0.8537c55'1.0223c310.9314
c21'0.8722c66'0.8537c320.9329
c23'1.1434c120.8721c441.0038
c31'1.0038c131.1434c550.8998
c32'0.9932c211.0038c661.4962

Fig.6

Sections of profiles and finite element modeling"

Fig.7

Comparison of maximum equivalent stress"

Fig.8

Triaxiality-equivalent plastic strain curves"

Fig.9

Fracture position on T001 profile in roll bending"

Fig.10

Variation of I value with analysis step time"

Fig.11

Relation between I value with radius in roll bending"

Table 2

Avaluation of accuracy of minimum radius in roll bending"

型材实验临界辊弯半径/mm

Mises

屈服准则误差/%

Hill48

屈服准则误差/%

Yld2004屈服准则误差/%
T00165015.384.622.31
T00257517.394.352.61
T00377516.134.521.29
1 Shi L, Wen J B, Ren C. The prediction of microstructure evolution of 6005A aluminum alloy in a P-ECAP extrusion study[J]. Journal of Materials Engineering and Performance, 2018, 27(5): 2566-2575.
2 韩飞, 刘继英, 艾正青, 等. 辊弯成型技术理论及应用研究现状[J]. 塑性工程学报, 2010, 17(5): 53-60.
Han Fei, Liu Ji-ying, Ai Zheng-qing, et al. Research status of roll forming technology theory and application[J]. Chinese Journal of Plastic Engineering, 2010, 17(5): 53-60.
3 Yan Y, Wang H B, Li Q. The inverse parameter identification of Hill 48 yield criterion and its verification in press bending and roll forming process simulations[J]. Journal of Manufacturing Processes, 2015, 20(1): 46-53.
4 Li S, Engler O, Houtte P V. Plastic anisotropy and texture evolution during tensile testing of extruded aluminium profiles[J]. Modelling and Simulation in Materials Science and Engineering, 2005, 13(5): 783-795.
5 Lian J, Shen F, Jia X, et al. An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction[J]. International Journal of Solids and Structures, 2018, 151: 20-44.
6 Basak S, Panda S K, Lee M-G. Formability and fracture in deep drawing sheet metals: Extended studies for pre-strained anisotropic thin sheets[J]. International Journal of Mechanical Sciences, 2020, 170: No. 105346.
7 Achani D, Hopperstad O S, Lademo O G. Influence of advanced yield criteria on predictions of plastic anisotropy for aluminium alloy sheets[J]. International Journal of Material Forming, 2009, 2(Sup.1): 487-490.
8 Dick R E, Yoon J W. Plastic anisotropy and failure in thin metal: Material characterization and fracture prediction with an advanced constitutive model and polar EPS (effective plastic strain) fracture diagram for AA 3014-H19[J]. International Journal of Solids and Structures, 2018, 151: 195-213.
9 Lou Y, Yoon J W. Alternative approach to model ductile fracture by incorporating anisotropic yield function[J]. International Journal of Solids and Structures, 2019, 164: 12-24.
10 Grytten F, Holmedal B, Hopperstad O S, et al. Evaluation of identification methods for YLD2004-18p[J]. International Journal of Plasticity, 2008, 24(12): 2248-2277.
11 Bate P, An Y. Plastic anisotropy in AA5005 Al-1Mg: predictions using crystal plasticity finite element analysis[J]. Scripta Materialia, 2004, 51(10): 973-977.
12 Wei P, Lu C, Liu H, et al. Study of anisotropic plastic behavior in high pressure torsion of aluminum single crystal by crystal plasticity finite element method[J]. Crystals, 2017, 7(12): 362-372.
13 黄建科. 金属成形过程的细观损伤力学模型及韧性断裂准则研究[D]. 上海:上海交通大学材料科学与工程学院, 2009.
Huang Jian-ke. Research on meso-scale damage mechanics model and ductile fracture criterion of metal forming process[D]. Shanghai: School of Materials Science and Engineering, Shanghai Jiaotong University, 2009.
14 高付海, 桂良进, 范子杰. 基于韧性准则的金属板料冲压成形断裂模拟[J]. 工程力学, 2010, 27(2): 204-208.
Gao Fu-hai, Gui Liang-jin, Fan Zi-jie. Fracture simulation of sheet metal stamping based on toughness criterion[J]. Engineering Mechanics, 2010, 27(2): 204-208.
15 Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201-217.
16 Liu C, Li M, Yue T. Thick anisotropy analysis for AA7B04 aluminum plate using CPFEM and its application for springback prediction in multi-point bending[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(4): 1139-1153.
[1] Jue LI,An-shun ZHANG,Jun-hui ZHANG,Jun-feng QIAN. Model testing and numerical analysis of dynamic response of graded crushed rock base structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1782-1789.
[2] Heng ZHANG,Zhi-gang ZHAN,Ben CHEN,Pang-chieh SUI,Mu PAN. Anisotropic transport properties of gas diffusion layer based on pore⁃scale model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2055-2062.
[3] Hui-shuang JI,Yan PENG,Yang LIU,Yan-bo YANG,Kun GAO,Li-min ER. Solidification behavior and quality control of molten copper in SCR production line [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2021-2030.
[4] Hong-liang XIANG,Sheng-tao CHEN,Li-ping DENG,Wei ZHANG,Tu-sheng ZHAN. Microstructure and properties of microalloying 2205 duplex stainless steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1645-1652.
[5] Xiao-yan GU,Dong-feng LIU,Jing LIU,Da-qian SUN,Hui-feng MA. Effect of welding energy on microstructure and mechanical properties of Cu/Al joints welded by ultrasonic welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1600-1607.
[6] Zhuo YI,Wen-zhi FU,Ming-zhe LI. Numerical simulation and experiment on double⁃layered split ultrahigh pressure die [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1593-1599.
[7] Xue⁃guang ZHANG,Ming⁃meng JIA,Chun⁃guo LIU,Guang⁃zhong HE. Trajectory design and FE simulation for profile stretch bending based on incremental control method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1272-1279.
[8] WANG Chun-sheng, ZOU Li, YANG Xin-hua. Analysis of fatigue life factors of aluminum alloy welded joints based on neighborhood rough set theory [J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[9] WANG Hui, ZHOU Jie, XIONG Yu, TAO Ya-ping, XIANG Rong. Springback compensation for stamping part with complex surface based on reverse engineering [J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[10] HU Kan, YU Ye, YING Liang, HU Ping, HOU Wen-bin. Optimization design of hot-stamping beam structure considering rollover crash safety of school bus [J]. 吉林大学学报(工学版), 2017, 47(3): 884-890.
[11] LUN Feng-yan, FU Wen-zhi, LI Ming-zhe, YI Zhuo, WANG Xin-tong, CHEN Xue. Forming of flexible rolling of three-dimensional surface based on bended rolls [J]. 吉林大学学报(工学版), 2017, 47(3): 876-883.
[12] HU Zhi-qing,ZHEN Jiao-jiao,FENG Zeng-ming,ZHOU Shu-hong. Flexible rolling and stretch forming surface technology and numerical simulation [J]. 吉林大学学报(工学版), 2014, 44(3): 701-707.
[13] WANG Mi, CAI Zhong-yi, LI Ming-zhe, WANG Da-ming. Calculation of bending deformation of flexible roll forming for three-dimensional surface parts and numerical simulation [J]. 吉林大学学报(工学版), 2014, 44(2): 404-408.
[14] CAO Jun-hui, FU Wen-zhi, LI Ming-zhe, PENG He-li. Influence factors on dimpling in multi-point thermoforming for polymer sheet [J]. 吉林大学学报(工学版), 2013, 43(06): 1536-1540.
[15] LI Ren-jun, LI Ming-zhe, XUE Peng-fei, CAI Zhong-yi, QIU Ning-jia. Method of flexible rolling for surface sheet metal [J]. 吉林大学学报(工学版), 2013, 43(06): 1529-1535.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!