Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (8): 2395-2403.doi: 10.13229/j.cnki.jdxbgxb.20211090

Previous Articles    

Loop-closure detection algorithm based on point cloud histogram and vehicle positioning method

Shou-tao LI1(),Jia-lin LI1,2,Qing-yu MENG1,2,Hong-yan GUO1,2()   

  1. 1.College of Communication Engineering,Jilin University,Changchun 130022,China
    2.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2021-10-23 Online:2023-08-01 Published:2023-08-21
  • Contact: Hong-yan GUO E-mail:list@jlu.edu.cn;guohy11@jlu.edu.cn

Abstract:

Aiming at the problem of inaccurate positioning of intelligent vehicles due to the loss of GPS signals on complex urban roads, a factor graph optimization model is established to perform data fusion on LiDAR (Light detection and ranging) and Inertial Measurement Unit(IMU), and the lidar-inertial odometry (LiDAR-inertial odometry, LIO) vehicle positioning method under the tightly-coupled framework is proposed, which can estimate vehicle state information in real time; a loop-closure detection algorithm based on point cloud histograms is proposed. The similarity of the point cloud determines whether the vehicle has reached the same position, and then combines the information from the last time that the vehicle passed the position to correct the current state of the vehicle, reducing the accumulation of positioning errors. The test results on the KITTI dataset show that the loop-closure detection module can effectively reduce the error accumulation of the LIO, and the LIO with the loop-closure detection module has excellent positioning accuracy.

Key words: control science and engineering, point cloud histogram, loop-closure detection, vehicle positioning

CLC Number: 

  • TP391.4

Fig.1

System Block Diagram"

Fig.2

Schematic of motion compensation"

Fig.3

IMU pre-integration principle"

Fig.4

Sliding window operation strategy"

Fig.5

Classification of cells"

Fig.6

05 Sequence comparison of trajectory of each system"

Fig.7

05 Sequence LIO-loop trajectory error"

Fig.8

Point cloud histogram of vehicle passing point A for the first time"

Fig.9

Point cloud histogram of vehicle passing point A for the second time"

Fig.10

Absolute position error statistics of 05 sequence LIO-loop trajectory"

1 肖光年, 隽志才, 高晶鑫. 基于GPS定位数据的出行端点推断[J]. 吉林大学学报: 工学版, 2016, 46(3): 770-776.
Xiao Guang-nian, Zhi-cai Jun, Gao Jing-xin. Travel endpoint inference based on GPS positioning data[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(3): 770-776.
2 Qin C, Ye H, Pranata C E, et al. Lins: a lidar-inertial state estimator for robust and efficient navigation[C]∥IEEE International Conference on Robotics and Automation, Paris, 2020: 8899-8906.
3 兰凤崇, 李继文, 陈吉清. 面向动态场景复合深度学习与并行计算的DG-SLAM算法[J]. 吉林大学学报: 工学版, 2021, 51(4): 1437-1446.
Lan Feng-chong, Li Ji-wen, Chen Ji-qing. DG-SLAM algorithm for dynamic scene compound deep learning and parallel computing[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1437-1446.
4 Xie G, Zong Q, Zhang X, et al. Loosely-coupled lidar-inertial odometry and mapping in real time[J]. International Journal of Intelligent Robotics and Applications, 2021, 5(2): 119-129.
5 Zhang J, Singh S. LOAM: lidar odometry and mapping in real-time[J]. Robotics: Science and Systems. 2014, 2(9) : 1-9.
6 Chen P, Shi W, Bao S, et al. Low-drift odometry, mapping and ground segmentation using a backpack LiDAR system[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7285-7292.
7 宋锐, 方勇纯, 刘辉. 基于LiDAR/INS的野外移动机器人组合导航方法[J]. 智能系统学报, 2020, 15(4): 804-810.
Song Rui, Fang Yong-chun, Liu Hui. Integrated navigation method for mobile robots in the field based on LiDAR/INS[J]. Journal of Intelligent Systems, 2020, 15(4): 804-810.
8 Ye H, Chen Y, Liu M. Tightly coupled 3d lidar inertial odometry and mapping[C]∥International Conference on Robotics and Automation, Shenyang, China, 2019: 3144-3150.
9 Meng Q, Guo H, Zhao X, et al. Loop-closure detection with a multiresolution point cloud histogram mode in lidar odometry and mapping for intelligent vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(3): 1307-1317.
10 Jiang K, Zhang X, Qin B, et al. Feature-based loop closure detection and optimization for LiDAR mapping[J]. SAE Technical Paper, 2020-01-5225.
11 Li K, Li M, Hanebeck U D. Towards high-performance solid-state-lidar-inertial odometry and mapping[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5167-5174.
12 吴环宇. 基于激光雷达的智能车辆三维地图构建和定位算法研究[D].长春: 吉林大学汽车工程学院, 2020.
Wu Huan-yu. Research on intelligent vehicle 3D map construction and positioning algorithm based on lidar[D]. Changchun: College of Automotive Engineering, Jilin University, 2020.
13 Shan T, Englot B, Meyers D, et al. Lio-sam: tightly-coupled lidar inertial odometry via smoothing and mapping[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, 2020: 5135-5142.
14 Zhang J, Singh S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots, 2017, 41(2): 401-416.
15 Liu Z, Li Y, Chen C. Application of IMU pre-integration in variable-height lidar odometry[C]∥4th International Conference on Robotics and Automation Sciences, Wuhan, China, 2020: 112-116.
16 Qin T, Li P, Shen S. Vins-mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020.
17 Magnusson M, Andreasson H, Nüchter A, et al. Automatic appearance-based loop detection from three-dimensional laser data using the normal distributions transform[J]. Journal of Field Robotics, 2009, 26(11/12): 892-914.
18 Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: The kitti dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
19 Kim G, Park B, Kim A. 1-day learning, 1-year localization: long-term lidar localization using scan context image[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1948-1955.
[1] Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095.
[2] Yun-feng HU,Tong YU,Hui-ce YANG,Yao SUN. Optimal control method of fuel cell start⁃up in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2034-2043.
[3] Yuan-hong LIU,Pan-pan GUO,Yan-sheng ZHANG,Xin LI. Feature extraction of sparse graph preserving projection based on Riemannian manifold [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2268-2279.
[4] De-feng HE,Jie LUO,Xiao-xiang SHU. Delay-feedback predictive cruise control of autonomous and connected vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 349-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!